Solveeit Logo

Question

Question: A small block slides down from rest at point A on the surface of a smooth circular cylinder, as show...

A small block slides down from rest at point A on the surface of a smooth circular cylinder, as shown. At point B, the block falls off (leaves) the cylinder. The equation relating the angles θ1\theta_1 and θ2\theta_2 is given by

एक छोटा ब्लॉक बिन्दु A से विरामावस्था से एक चिकने वृत्तीय बेलन पर फिसलता है जैसा कि चित्र में दर्शाया गया है। बिन्दु B पर ब्लॉक बेलन की सतह को छोड़ देता है। कोण θ1\theta_1 तथा θ2\theta_2 को सम्बन्धित करने वाली समीकरण होगी ?

Answer

2 \cos \theta_1 = 3 \cos \theta_2

Explanation

Solution

The problem involves a small block sliding down a smooth circular cylinder from rest at point A and leaving the cylinder at point B. We need to find the relationship between the angles θ1\theta_1 (position of A) and θ2\theta_2 (position of B), both measured from the vertical axis. Let RR be the radius of the cylinder and mm be the mass of the block.

1. Conservation of Mechanical Energy (from A to B): The block starts from rest at A, so its initial velocity vA=0v_A = 0. Let's set the potential energy reference at the center of the cylinder.

  • At point A:
    • Potential Energy PEA=mgRcosθ1PE_A = mgR \cos \theta_1.
    • Kinetic Energy KEA=0KE_A = 0.
    • Total Energy EA=mgRcosθ1E_A = mgR \cos \theta_1.
  • At point B:
    • Potential Energy PEB=mgRcosθ2PE_B = mgR \cos \theta_2.
    • Let vBv_B be the velocity of the block at B.
    • Kinetic Energy KEB=12mvB2KE_B = \frac{1}{2} mv_B^2.
    • Total Energy EB=mgRcosθ2+12mvB2E_B = mgR \cos \theta_2 + \frac{1}{2} mv_B^2.

Since the surface is smooth (frictionless), mechanical energy is conserved: EA=EBE_A = E_B mgRcosθ1=mgRcosθ2+12mvB2mgR \cos \theta_1 = mgR \cos \theta_2 + \frac{1}{2} mv_B^2 Rearranging to find vB2v_B^2: 12mvB2=mgR(cosθ1cosθ2)\frac{1}{2} mv_B^2 = mgR (\cos \theta_1 - \cos \theta_2) vB2=2gR(cosθ1cosθ2)v_B^2 = 2gR (\cos \theta_1 - \cos \theta_2) (Equation 1)

2. Newton's Second Law at point B (where the block leaves the cylinder): At point B, the forces acting on the block are:

  • Gravitational force mgmg acting vertically downwards.
  • Normal force NN acting radially outwards.

For circular motion, the net radial force provides the centripetal force mvB2/Rmv_B^2/R. The component of gravity along the radius towards the center is mgcosθ2mg \cos \theta_2. Applying Newton's second law in the radial direction: mgcosθ2N=mvB2Rmg \cos \theta_2 - N = \frac{mv_B^2}{R}

The block leaves the cylinder when the normal force NN becomes zero. Setting N=0N=0: mgcosθ2=mvB2Rmg \cos \theta_2 = \frac{mv_B^2}{R} Rearranging to find vB2v_B^2: vB2=gRcosθ2v_B^2 = gR \cos \theta_2 (Equation 2)

3. Relating θ1\theta_1 and θ2\theta_2: Equate the expressions for vB2v_B^2 from Equation 1 and Equation 2: 2gR(cosθ1cosθ2)=gRcosθ22gR (\cos \theta_1 - \cos \theta_2) = gR \cos \theta_2 Divide both sides by gRgR: 2(cosθ1cosθ2)=cosθ22 (\cos \theta_1 - \cos \theta_2) = \cos \theta_2 2cosθ12cosθ2=cosθ22 \cos \theta_1 - 2 \cos \theta_2 = \cos \theta_2 2cosθ1=3cosθ22 \cos \theta_1 = 3 \cos \theta_2

This is the equation relating the angles θ1\theta_1 and $\theta_2.