Solveeit Logo

Question

Question: A slab of material of dielectric constant K has the same area A as the plates of a parallel plate ca...

A slab of material of dielectric constant K has the same area A as the plates of a parallel plate capacitor, and has thickness (34d),\left( \frac{3}{4}d \right), where d is the separation of the plates. The change in capacitance when the slab is inserted between the plates is

A

C=ε0Ad(K+34K)C = \frac{\varepsilon_{0}A}{d}\left( \frac{K + 3}{4K} \right)

B

C=ε0Ad(2KK+3)C = \frac{\varepsilon_{0}A}{d}\left( \frac{2K}{K + 3} \right)

C

C=ε0Ad(2KK+3)C = \frac{\varepsilon_{0}A}{d}\left( \frac{2K}{K + 3} \right)

D

C=ε0Ad(4KK+3)C = \frac{\varepsilon_{0}A}{d}\left( \frac{4K}{K + 3} \right)

Answer

C=ε0Ad(4KK+3)C = \frac{\varepsilon_{0}A}{d}\left( \frac{4K}{K + 3} \right)

Explanation

Solution

: Here, thickness of the slab,

t=34dt = \frac{3}{4}d capacitance,

C=εoAdt(11K)=εoAd34d(11K)C = \frac{\varepsilon_{o}A}{d - t\left( 1 - \frac{1}{K} \right)} = \frac{\varepsilon_{o}A}{d - \frac{3}{4}d\left( 1 - \frac{1}{K} \right)}

=εoAd4+34dK=εoAd4(1+3K)=εoAd4K(K+3)= \frac{\varepsilon_{o}A}{\frac{d}{4} + \frac{3}{4}\frac{d}{K}} = \frac{\varepsilon_{o}A}{\frac{d}{4}\left( 1 + \frac{3}{K} \right)} = \frac{\varepsilon_{o}A}{d}\frac{4K}{(K + 3)}