Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A slab of material of dielectric constant KK has the same area as the plates of a parallel plate capacitor but has a thickness (34)d\left(\frac{3}{4}\right) d, where dd is the separation of the plates. The ratio of the capacitance CC (in the presence of the dielectric) to the capacitance C0C_{0} (in the absence of the dielectric) is

A

3KK+4\frac{3K}{K+4}

B

34K\frac{3}{4}K

C

4KK+3K\frac{4K}{K+3}K

D

43K\frac{4}{3}K

Answer

4KK+3K\frac{4K}{K+3}K

Explanation

Solution

The capacitance of a parallel plate capacitor in the absence of the dielectric is
C0=ε0AdC_{0}=\frac{\varepsilon_{0} A}{d}
If a dielectric slab is partially filled between the plates of capacitor
C=ε0Adt+tKC=\frac{\varepsilon_{0} A}{d-t+\frac{t}{K}}
C=ε0A(d34d)+(3d4K)C=\frac{\varepsilon_{0} A}{\left(d-\frac{3}{4} d\right)+\left(\frac{3 d}{4 K}\right)}
C=ε0Ad4+3d4KC =\frac{\varepsilon_{0} A}{\frac{d}{4}+\frac{3 d}{4 K}}
=4Kε0Ad(K+3)=\frac{4 K \varepsilon_{0} A}{d(K+3)}
CC0=4Kε0Ad(K+3)×dε0A\therefore \frac{C}{C_{0}} =\frac{4 K \varepsilon_{0} A}{d(K+3)} \times \frac{d}{\varepsilon_{0} A}
=4K(K+3)=\frac{4 K}{(K+3)}