Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

A slab of dielectric constant K has the same cross-sectional area as the plates of a parallel plate capacitor and thickness (3/4)d, where d is the separation of the plates. The capacitance of the capacitor when the slab is inserted between the plates will be:

(Given C0C_0 = capacitance of capacitor with air as medium between plates.)

A

4KC03+K\frac{4KC_0}{3+K}

B

3KC03+K\frac{3KC_0}{3+K}

C

3+K4KC0\frac{3+K}{4KC_0}

D

K4+K\frac{K}{4+K}

Answer

4KC03+K\frac{4KC_0}{3+K}

Explanation

Solution

x+y+x + y + 3d4\frac{3d}{4} =dx+y== dx + y = d4\frac{d}{4}

A0d=C0\frac{A∈_0}d = C_0

V=Ex+EK×3d4+Ey=3Ed4K+E(x+y)∆V = Ex +\frac{ E}{K} × \frac{3d}{4} + Ey= \frac{3Ed}{4K }+ E(x + y)

V=E[3d4K+d4]∆V = E[\frac{3d}{4K }+ \frac{d}{4}]

V=σ0[3d+dK4K]=QdA0[3+K4K]∆V = \frac{σ}{∈_0}[\frac{3d + dK}{4K}] = \frac{Qd}{A∈_0}[\frac{3 + K}{4K}]

QV=C=A0d[4KK+3]\frac{Q}{∆V} = C =\frac{ A∈_0}d[\frac{4K}{K + 3}]

C=C04K3+KC=\frac{C_04K}{3+K}

C=4KC03+KC=\frac{4KC_0}{3+K}