Solveeit Logo

Question

Question: A sinusoidal wave travelling in the positive direction on stretched string has amplitude \[20\,{\tex...

A sinusoidal wave travelling in the positive direction on stretched string has amplitude 20cm20\,{\text{cm}}, wavelength 1m{\text{1}}\,{\text{m}} and wave velocity 5 ms1{\text{5 m}}{{\text{s}}^{ - 1}}. At x=0x = 0 and t=0t = 0, it is given that y=0y = 0 and dydt<0\dfrac{{dy}}{{dt}} < 0. Find the wave function y(x,t)y(x,t)
A. y(x,t)=(0.2m)sin[(2πm1)x+(10πs1)t]my(x,t) = \left( {0.2{\text{m}}} \right){\text{sin}}\left[ {\left( {{\text{2}}\pi {{\text{m}}^{ - 1}}} \right)x + \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}
B. y(x,t)=(0.2m)cos[(10πs1)t+(2πm1)x]my(x,t) = \left( {0.2{\text{m}}} \right)\cos \left[ {\left( {10\pi {{\text{s}}^{ - 1}}} \right)t + \left( {2\pi {{\text{m}}^{ - 1}}} \right)x} \right]{\text{m}}
C. y(x,t)=(0.2m)sin[(2πm1)x(10πs1)t]my(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}
D. y(x,t)=(0.2m)sin[(πm1)x+(5πs1)t]my(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {\pi {{\text{m}}^{ - 1}}} \right)x + \left( {5\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}

Explanation

Solution

To find the wave function, first recall the general equation for a wave. The wave is said to be moving in a positive direction, so apply the general equation for a wave moving in a positive direction. Using the given values find the value of wavenumber and angular frequency and put these values in the general equation. Apply the conditions given in the question to get the required wave function.

Complete step by step answer:
Given, amplitude of the wave, A=20cm=0.2mA = 20\,{\text{cm}} = 0.2\,{\text{m}}
Wavelength of the wave, λ=1m\lambda = 1\,{\text{m}}
Velocity of the wave, v=5 ms1v = {\text{5 m}}{{\text{s}}^{ - 1}}
And at x=0x = 0 and t=0t = 0, it has y=0y = 0 and dydt<0\dfrac{{dy}}{{dt}} < 0.

The general equation for a wave moving in positive x-direction is given by,
y(x,t)=Asin(kxωt+ϕ)y(x,t) = A\sin \left( {kx - \omega t + \phi } \right) (i)
where AA is the amplitude, kk is the wavenumber, ω\omega is the angular frequency and ϕ\phi is the phase of the wave.
The formula for wavenumber of a wave is,
k=2πλk = \dfrac{{2\pi }}{\lambda } (ii)
where λ\lambda is the wavelength of the wave.
Here, λ=1m\lambda = 1\,{\text{m}} so, wavenumber of the wave is,
k=2π1m1k = \dfrac{{2\pi }}{1}\,{{\text{m}}^{ - 1}}
k=2πm1\Rightarrow k = 2\pi \,{{\text{m}}^{ - 1}}
The formula for angular frequency of a wave is,
ω=vk\omega = vk (iii)
where vv is the velocity and kk is the wavenumber of the wave.
Here, v=5 ms1v = {\text{5 m}}{{\text{s}}^{ - 1}} and k=2πm1k = 2\pi \,{{\text{m}}^{ - 1}}so, the angular frequency of the wave is,
ω=5×2π\omega = 5 \times 2\pi
ω=10πs - 1\Rightarrow \omega = 10\pi \,{{\text{s}}^{{\text{ - 1}}}} (iv)

Now, putting the values of AA, kk and ω\omega in equation (i), we get
y(x,t)=0.2sin(2πx10πt+ϕ)y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t + \phi } \right) (v)
Now putting the condition x=0x = 0, t=0t = 0 and y=0y = 0, we get
0=0.2sinϕ0 = 0.2\sin \phi
sinϕ=0\Rightarrow \sin \phi = 0
ϕ=2πn,n=0,1,2...\Rightarrow \phi = 2\pi n,\,\,\,n = 0,1,2...
Now, we differentiate equation (v) with respect to tt to get the value of dydt\dfrac{{dy}}{{dt}},
dydt=0.2cos(2πx10πt+ϕ)×(10π)\dfrac{{dy}}{{dt}} = 0.2\cos \left( {2\pi x - 10\pi t + \phi } \right) \times \left( { - 10\pi } \right)
dydt=2πcos(2πx10πt+ϕ)\Rightarrow \dfrac{{dy}}{{dt}} = - 2\pi \cos \left( {2\pi x - 10\pi t + \phi } \right)
At x=0x = 0, t=0t = 0, we have,
dydt=2πcos(ϕ)\dfrac{{dy}}{{dt}} = - 2\pi \cos \left( \phi \right)
Therefore, it satisfies the condition dydt<0\dfrac{{dy}}{{dt}} < 0.
Putting the value ϕ=0\phi = 0 in equation (v) we get,
y(x,t)=0.2sin(2πx10πt)y(x,t) = 0.2\sin \left( {2\pi x - 10\pi t} \right)
y(x,t)=(0.2m)sin[(2πm1)x(10πs1)t]m\therefore y(x,t) = \left( {0.2{\text{m}}} \right)\sin \left[ {\left( {2\pi {{\text{m}}^{ - 1}}} \right)x - \left( {10\pi {{\text{s}}^{ - 1}}} \right)t} \right]{\text{m}}
The equation matches with option (C).

Hence the correct answer is option C.

Note: Here we have applied the general equation for a wave moving in positive direction but for a wave moving in negative direction the general equation is, y(x,t)=Asin(kx+ωt+ϕ)y(x,t) = A\sin \left( {kx + \omega t + \phi } \right). Also, while solving problems always check that the units are the same, that is all quantities are in SI units or CGS units.