Solveeit Logo

Question

Question: A sinusoidal voltage of peak value \(283V\) and angular frequency \(320{{s}^{-1}}\) is applied to a ...

A sinusoidal voltage of peak value 283V283V and angular frequency 320s1320{{s}^{-1}} is applied to a series LCR circuit. Given that R=5Ω, L=25mHR=5\Omega, \text{ }L=25mH and C=1000μFC=1000\mu F. The total impedance and the phase difference between the voltage across the source and the current will respectively be:
A. 7Ω and 45 B. 10Ω and tan1(53) C. 10Ω and tan1(83) D. 7Ω and tan1(53) \begin{aligned} & \text{A}\text{. }7\Omega \text{ and 4}{{\text{5}}^{\circ }} \\\ & \text{B}\text{. }10\Omega \text{ and }{{\tan }^{-1}}\left( \dfrac{5}{3} \right) \\\ & \text{C}\text{. }10\Omega \text{ and }{{\tan }^{-1}}\left( \dfrac{8}{3} \right) \\\ & \text{D}\text{. }7\Omega \text{ and }{{\tan }^{-1}}\left( \dfrac{5}{3} \right) \\\ \end{aligned}

Explanation

Solution

In a series LCR circuit, the electrical components; resistor, inductor and capacitor are connected end to end in the circuit. Impedance of a LCR circuit includes resistance (R)\left( R \right), inductive reactance (XL)\left( {{X}_{L}} \right) and capacitive reactance (XC)\left( {{X}_{C}} \right).

Formula used:
Inductive reactance, XL=ωL{{X}_{L}}=\omega L
Capacitive reactance, XC=1ωC{{X}_{C}}=\dfrac{1}{\omega C}
Impedance of series LCR circuit, Z=R2+(XL1XC)2Z=\sqrt{{{R}^{2}}+{{\left( {{X}_{L}}-\dfrac{1}{{{X}_{C}}} \right)}^{2}}}

Complete step by step answer:
Series LCR circuit is a type of electrical circuit in which the three circuit elements; Resistor, Inductor, and Capacitor are connected in series in the circuit.

Electrical impedance is the total opposition that an electrical circuit presents to alternating current. Impedance of a circuit is measured in ohms.
Impedance of series LCR circuit is given by,

Z=R2+(XL1XC)2Z=\sqrt{{{R}^{2}}+{{\left( {{X}_{L}}-\dfrac{1}{{{X}_{C}}} \right)}^{2}}}
Where,
RRis the resistance
XL{{X}_{L}} is the inductive reactance
XC{{X}_{C}} is the capacitive reactance
If VV is the potential difference and II is the current and ϕ\phi is the phase difference, then,
tanϕ=XLXCR\tan \phi =\dfrac{{{X}_{L}}-{{X}_{C}}}{R}
We are given a sinusoidal voltage of peak value 283V283Vand angular frequency 320s1320{{s}^{-1}}. Also, R=5Ω, L=25mHR=5\Omega ,\text{ }L=25mH and C=1000μFC=1000\mu F.
Capacitive reactance is given as,

XC=1ωC{{X}_{C}}=\dfrac{1}{\omega C}
Putting values,

ω=320s1 C=1000μF \begin{aligned} & \omega =320{{s}^{-1}} \\\ & C=1000\mu F \\\ \end{aligned}

We get,

XC=1320×1000×106=1320×103 XC=3.125Ω \begin{aligned} & {{X}_{C}}=\dfrac{1}{320\times 1000\times {{10}^{-6}}}=\dfrac{1}{320\times {{10}^{-3}}} \\\ & {{X}_{C}}=3.125\Omega \\\ \end{aligned}

Inductive reactance is given as,
XL=ωL{{X}_{L}}=\omega L
Putting values,
ω=320s1 L=25mH \begin{aligned} & \omega =320{{s}^{-1}} \\\ & L=25mH \\\ \end{aligned}

We get,

XL=320×25×103=7000×103 XL=7Ω \begin{aligned} & {{X}_{L}}=320\times 25\times {{10}^{-3}}=7000\times {{10}^{-3}} \\\ & {{X}_{L}}=7\Omega \\\ \end{aligned}

Resistance is given as,
R=5ΩR=5\Omega
Expression for Impedance of a LCR circuit:
Z=R2+(XL1XC)2Z=\sqrt{{{R}^{2}}+{{\left( {{X}_{L}}-\dfrac{1}{{{X}_{C}}} \right)}^{2}}}
Where,
RR is the value of resistance
XL{{X}_{L}} is the Inductive reactance
XC{{X}_{C}} is the Capacitive reactance

We have,
R=5Ω XL=7Ω XC=3.125Ω \begin{aligned} & R=5\Omega \\\ & {{X}_{L}}=7\Omega \\\ & {{X}_{C}}=3.125\Omega \\\ \end{aligned}

Z;=(5)2+(83.125)2=(5)2+(4.875)2 Z=25+23.765=48.7657 Z=7Ω \begin{aligned} &Z;=\sqrt{{{\left( 5 \right)}^{2}}+{{\left( 8-3.125 \right)}^{2}}}=\sqrt{{{\left(5 \right)}^{2}}+{{\left( 4.875 \right)}^{2}}} \\\ & Z=\sqrt{25+23.765}=\sqrt{48.765}\simeq 7 \\\ & Z=7\Omega \\\ \end{aligned}

Now,

tanϕ=XLXCR\tan \phi =\dfrac{{{X}_{L}}-{{X}_{C}}}{R}
Putting values,
R=5Ω XL=7Ω XC=3.125Ω \begin{aligned} & R=5\Omega \\\ & {{X}_{L}}=7\Omega \\\ & {{X}_{C}}=3.125\Omega \\\ \end{aligned}
tanϕ=83.1255=4.87551 ϕ=tan1(1) ϕ=π4 \begin{aligned} & \tan \phi =\dfrac{8-3.125}{5}=\dfrac{4.875}{5}\approx 1 \\\ & \phi ={{\tan }^{-1}}\left( 1 \right) \\\ & \phi =\dfrac{\pi }{4} \\\ \end{aligned}

The total impedance of the circuit is 7Ω7\Omega
The phase difference between the voltage across the source and the current is 45{{45}^{\circ }}
Hence, the correct option is A.

Note:
Series LCR circuit means that the three elements: Resistor, Inductor and Capacitor are connected end to end in a circuit. All the three elements individually offer some opposition to the flow of alternating current through the circuit. Impedance is the total opposition offered by these elements to the AC current in the circuit. The unit of Impedance is ohms. Impedance can be assumed as the analogue of resistance in an AC circuit.