Solveeit Logo

Question

Physics Question on Alternating current

A sinusoidal voltage of peak value 283V283\, V and angular frequency 320/s320/s is applied to a series LCRLCR circuit. Given that R=5Ω,L=25mHR = 5 \, \Omega , L = 25 \, mH and C=1000μFC=1000 \, \mu F. The total impedance, and phase difference between the voltage across the source and the current will respectively be :

A

10Ω10 \Omega and tan1(53)\tan^{-1} \left( \frac{5}{3} \right)

B

7Ω7 \Omega and 4545^{\circ}

C

10Ω10 \Omega and tan1(83)\tan^{-1} \left( \frac{8}{3} \right)

D

7Ω7 \Omega and tan1(53)\tan^{-1} \left( \frac{5}{3} \right)

Answer

7Ω7 \Omega and 4545^{\circ}

Explanation

Solution

e0=283e_{0}=283 volt ω=320\omega=320
xL=320×25×103=8Ωx_{L}=320\times25\times10^{-3}=8\,\Omega
xC=1ωC=1320×1000×106x_{C}=\frac{1}{\omega C}=\frac{1}{320\times1000\times10^{-6}}
=1000320=3.1Ω=\frac{1000}{320}=3.1\,\Omega
R=5ΩR=5\,\Omega
Z=R2+(XLXC)2=50=7ΩZ=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{50}=7\,\Omega
tanϕ=XLXCRtan\,\phi=\frac{X_{L}-X_{C}}{R}
=1ϕ=45=1\,\phi=45^{\circ}