Solveeit Logo

Question

Question: A single slit diffraction experiment is performed to determine the slit width using the equation, $\...

A single slit diffraction experiment is performed to determine the slit width using the equation, bdD=mλ\frac{bd}{D}=m\lambda, where bb is the slit width, DD the shortest distance between the slit and the screen, dd the distance between the mthm^{th} diffraction maximum and the central maximum, and λ\lambda is the wavelength. DD and dd are measured with scales of least count of 1 cm and 1 mm, respectively. The values of λ\lambda and mm are known precisely to be 600 nm and 3, respectively. The absolute error (in μ\mum) in the value of bb estimated using the diffraction maximum that occurs for m=3m=3 with d=5d=5 mm and D=1D=1 m is ___.

Answer

37.8

Explanation

Solution

The given equation relating the slit width bb, the distance dd of the mthm^{th} diffraction maximum from the central maximum, the distance DD between the slit and the screen, the order mm, and the wavelength λ\lambda is bdD=mλ\frac{bd}{D} = m\lambda.

We need to find the absolute error in the value of bb. From the given equation, we can express bb as: b=mλDdb = \frac{m\lambda D}{d}

We are given the following values: m=3m = 3 (known precisely, Δm=0\Delta m = 0) λ=600\lambda = 600 nm =600×109= 600 \times 10^{-9} m (known precisely, Δλ=0\Delta \lambda = 0) d=5d = 5 mm =5×103= 5 \times 10^{-3} m D=1D = 1 m

The errors in the measurements of DD and dd are related to the least count of the scales used. Least count for DD is 1 cm =102= 10^{-2} m. The absolute error in DD is ΔD=12×least count=12×102\Delta D = \frac{1}{2} \times \text{least count} = \frac{1}{2} \times 10^{-2} m =0.5×102= 0.5 \times 10^{-2} m. Least count for dd is 1 mm =103= 10^{-3} m. The absolute error in dd is Δd=12×least count=12×103\Delta d = \frac{1}{2} \times \text{least count} = \frac{1}{2} \times 10^{-3} m =0.5×103= 0.5 \times 10^{-3} m.

To find the absolute error in bb, we use the formula for propagation of errors. The formula for bb is b=mλDdb = \frac{m\lambda D}{d}. Since mm and λ\lambda are known precisely, they act as constants in the error calculation. Let C=mλC = m\lambda. Then b=CDdb = C \frac{D}{d}.

The maximum relative error in bb is given by the sum of the relative errors in the measured quantities DD and dd: Δbb=ΔCC+ΔDD+Δdd\frac{\Delta b}{b} = \left| \frac{\Delta C}{C} \right| + \left| \frac{\Delta D}{D} \right| + \left| \frac{\Delta d}{d} \right| Since C=mλC = m\lambda has no error, ΔC=0\Delta C = 0. Δbb=ΔDD+Δdd\frac{\Delta b}{b} = \frac{\Delta D}{D} + \frac{\Delta d}{d}

First, calculate the value of bb using the given values: b=3×(600×109 m)×(1 m)5×103 m=1800×1095×103 m=1.8×1065×103 m=0.36×103 mb = \frac{3 \times (600 \times 10^{-9} \text{ m}) \times (1 \text{ m})}{5 \times 10^{-3} \text{ m}} = \frac{1800 \times 10^{-9}}{5 \times 10^{-3}} \text{ m} = \frac{1.8 \times 10^{-6}}{5 \times 10^{-3}} \text{ m} = 0.36 \times 10^{-3} \text{ m} b=3.6×104 mb = 3.6 \times 10^{-4} \text{ m}

Now, calculate the relative errors in DD and dd: ΔDD=0.5×102 m1 m=0.5×102=0.005\frac{\Delta D}{D} = \frac{0.5 \times 10^{-2} \text{ m}}{1 \text{ m}} = 0.5 \times 10^{-2} = 0.005 Δdd=0.5×103 m5×103 m=0.55=0.1\frac{\Delta d}{d} = \frac{0.5 \times 10^{-3} \text{ m}}{5 \times 10^{-3} \text{ m}} = \frac{0.5}{5} = 0.1

The relative error in bb is: Δbb=0.005+0.1=0.105\frac{\Delta b}{b} = 0.005 + 0.1 = 0.105

Now, calculate the absolute error in bb: Δb=b×(ΔDD+Δdd)\Delta b = b \times \left( \frac{\Delta D}{D} + \frac{\Delta d}{d} \right) Δb=(3.6×104 m)×(0.105)\Delta b = (3.6 \times 10^{-4} \text{ m}) \times (0.105) Δb=0.378×104 m\Delta b = 0.378 \times 10^{-4} \text{ m}

The question asks for the absolute error in μ\mum. 1 m=106 μm1 \text{ m} = 10^6 \ \mu\text{m} Δb=0.378×104×106 μm=0.378×102 μm=37.8 μm\Delta b = 0.378 \times 10^{-4} \times 10^6 \ \mu\text{m} = 0.378 \times 10^2 \ \mu\text{m} = 37.8 \ \mu\text{m}.

The final answer is 37.8\boxed{37.8}.