Solveeit Logo

Question

Question: (a) sin x + sin(x - 2022) = 1...

(a) sin x + sin(x - 2022) = 1

Answer

x = 1011 + nπ + (-1)^n arcsin(1 / (2 cos(1011))), n ∈ ℤ

Explanation

Solution

The given equation is sinx+sin(x2022)=1\sin x + \sin(x - 2022) = 1.
We use the sum-to-product trigonometric identity: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right).
Let A=xA = x and B=x2022B = x - 2022.
Then A+B2=x+(x2022)2=2x20222=x1011\frac{A+B}{2} = \frac{x + (x - 2022)}{2} = \frac{2x - 2022}{2} = x - 1011.
And AB2=x(x2022)2=xx+20222=20222=1011\frac{A-B}{2} = \frac{x - (x - 2022)}{2} = \frac{x - x + 2022}{2} = \frac{2022}{2} = 1011.

Substituting these into the equation, we get: 2sin(x1011)cos(1011)=12 \sin(x - 1011) \cos(1011) = 1.

Now, we can isolate the term involving xx: sin(x1011)=12cos(1011)\sin(x - 1011) = \frac{1}{2 \cos(1011)}.

Let C=12cos(1011)C = \frac{1}{2 \cos(1011)}. This is a constant value since 1011 is a fixed number (in radians).
For the equation siny=C\sin y = C to have real solutions for yy, the value of CC must satisfy C1|C| \le 1.
So, we need to check if 12cos(1011)1\left|\frac{1}{2 \cos(1011)}\right| \le 1, which is equivalent to 12cos(1011)1 \le |2 \cos(1011)|, or cos(1011)12|\cos(1011)| \ge \frac{1}{2}.

Let's analyze the value of cos(1011)\cos(1011). The angle 1011 is in radians.
To understand where 1011 radians lies, we can divide it by 2π2\pi (2π6.2831852\pi \approx 6.283185).
1011/(2π)160.90141011 / (2\pi) \approx 160.9014.
So, 10111011 radians is approximately 160160 full rotations plus a remainder.
The remainder angle is 1011160×(2π)=1011320π1011 - 160 \times (2\pi) = 1011 - 320\pi.
Using π3.14159265\pi \approx 3.14159265, 320π1005.309648320\pi \approx 1005.309648.
The remainder angle is approximately 10111005.309648=5.6903521011 - 1005.309648 = 5.690352 radians.
This angle lies in the interval [0,2π)[0, 2\pi).
We know that 3π24.712\frac{3\pi}{2} \approx 4.712 and 2π6.2832\pi \approx 6.283. So 5.6903525.690352 radians is in the fourth quadrant.
In the fourth quadrant, the cosine function is positive.
The values of θ\theta in [0,2π)[0, 2\pi) for which cosθ12\cos \theta \ge \frac{1}{2} are [0,π3][5π3,2π)[0, \frac{\pi}{3}] \cup [\frac{5\pi}{3}, 2\pi).
π31.047\frac{\pi}{3} \approx 1.047 and 5π35.236\frac{5\pi}{3} \approx 5.236.
Since 5.6903525.690352 is in the interval [5π3,2π)[\frac{5\pi}{3}, 2\pi), we have cos(1011)=cos(5.690352)cos(5π3)=12\cos(1011) = \cos(5.690352) \ge \cos(\frac{5\pi}{3}) = \frac{1}{2}.
Since 5.6903525π35.690352 \ne \frac{5\pi}{3} and 5.6903522π5.690352 \ne 2\pi, the inequality is strict: cos(1011)>12\cos(1011) > \frac{1}{2}.
Therefore, 2cos(1011)>12 \cos(1011) > 1.
This implies 0<12cos(1011)<10 < \frac{1}{2 \cos(1011)} < 1.
Let C=12cos(1011)C = \frac{1}{2 \cos(1011)}. Since 0<C<10 < C < 1, we have C<1|C| < 1, so solutions exist.

Let α\alpha be the principal value such that sinα=C\sin \alpha = C. Since 0<C<10 < C < 1, we can take α=arcsin(C)\alpha = \arcsin(C), where 0<α<π20 < \alpha < \frac{\pi}{2}.
So, α=arcsin(12cos(1011))\alpha = \arcsin\left(\frac{1}{2 \cos(1011)}\right).

The equation is sin(x1011)=sin(α)\sin(x - 1011) = \sin(\alpha).
The general solution for siny=sinα\sin y = \sin \alpha is y=nπ+(1)nαy = n\pi + (-1)^n \alpha, where nn is an integer.
Substituting y=x1011y = x - 1011, we get: x1011=nπ+(1)nαx - 1011 = n\pi + (-1)^n \alpha, where nZn \in \mathbb{Z}.

Solving for xx: x=1011+nπ+(1)nαx = 1011 + n\pi + (-1)^n \alpha, where nZn \in \mathbb{Z}.

Substituting the value of α\alpha: x=1011+nπ+(1)narcsin(12cos(1011))x = 1011 + n\pi + (-1)^n \arcsin\left(\frac{1}{2 \cos(1011)}\right), where nZn \in \mathbb{Z}.

This is the general solution for the given equation.