Solveeit Logo

Question

Physics Question on Oscillations

A simple pendulum of length 1m1\, m is oscillating with an angular frequency 10rad/s10\, rad/s. The support of the pendulum starts oscillating up and down with a small angular frequency of 1rad/s1 \,rad/s and an amplitude of 102  m10^{-2} \; m. The relative change in the angular frequency of the pendulum is best given by :

A

103rad/s10^{-3} rad/s

B

101rad/s10^{-1} rad/s

C

1rad/s1\, rad/s

D

105rad/s10^{-5} rad/s

Answer

103rad/s10^{-3} rad/s

Explanation

Solution

Angular frequency of pendulum
ω=geff\omega = \sqrt{\frac{g_{eff }}{\ell}}
Δωω=12Δgeffgeff\therefore \frac{\Delta\omega}{\omega} = \frac{1}{2} \frac{\Delta g_{eff }}{g_{eff }}
Δω=12Δgg×ω\Delta\omega = \frac{1}{2} \frac{\Delta g}{g} \times\omega
[ωs\omega_s = angular frequency of support] Δω=12×2Aωs2100×100 \Delta \omega = \frac{1}{2} \times\frac{2 A \omega^{2}_{s} }{100} \times100
Δω=103\Delta\omega = 10^{-3} rad/sec.