Solveeit Logo

Question

Physics Question on Oscillations

A simple pendulum, made of a string of length ll and a bob of mass m, is released from a small angle θ0\theta_0. It strikes a block of mass MM, kept on a horizontal surface at its lowest point of oscillations, elastically. It bounces back and goes up to an angle θ1\theta_1. Then M is given by :

A

m2(θ0θ1θ0+θ1)\frac{m}{2}\left(\frac{\theta_{0} - \theta_{1}}{\theta_{0} + \theta_{1}}\right)

B

m2(θ0+θ1θ0θ1)\frac{m}{2}\left(\frac{\theta_{0} + \theta_{1}}{\theta_{0} - \theta_{1}}\right)

C

m(θ0+θ1θ0θ1)m\left(\frac{\theta_{0} + \theta_{1}}{\theta_{0} - \theta_{1}}\right)

D

m(θ0θ1θ0+θ1)m\left(\frac{\theta_{0} - \theta_{1}}{\theta_{0} + \theta_{1}}\right)

Answer

m(θ0θ1θ0+θ1)m\left(\frac{\theta_{0} - \theta_{1}}{\theta_{0} + \theta_{1}}\right)

Explanation

Solution

By momentum conservation
m2g(1cosθ0)=MVmm2g1(1cosθ)m\sqrt{2g\ell \left(1-\cos\theta_{0}\right) } = MV_{m} -m \sqrt{2g1\left(1-\cos\theta\right)}
\Rightarrow m\sqrt{2g\ell} \left\\{\sqrt{1-\cos\theta_{0}} + \sqrt{1-\cos\theta_{1}}\right\\} =MV_{m}
and e=1=Vm+2g(1cosθ1)2g(1cosθ0)e=1 = \frac{V_{m} +\sqrt{2g\ell\left(1-\cos\theta_{1}\right)} }{\sqrt{2g\ell\left(1-\cos\theta_{0}\right)}}
2g(1cosθ01cosθ1)=Vm\sqrt{2g\ell} \left(\sqrt{1-\cos\theta_{0} } - \sqrt{1-\cos\theta_{1}}\right) =V_{m} ...(I)
m2g(1cosθ0+1cosθ0)=MVMm\sqrt{2g\ell} \left(\sqrt{1-\cos\theta_{0}} + \sqrt{1-\cos\theta_{0}} \right) =MV_{M} ....(II)
Dividing
(1cosθ0+1cosθ1)(1cosθ01cosθ1)=Mm\frac{\left(\sqrt{1-\cos\theta_{0}} + \sqrt{1-\cos\theta_{1}}\right)}{\left(\sqrt{1-\cos\theta_{0}} -\sqrt{1-\cos\theta_{1}}\right)} = \frac{M}{m}
By componendo divided
mMm+M=1cosθ11cosθ0=sin(θ12)sin(θ02)\frac{m-M}{m+M} = \frac{\sqrt{1-\cos\theta_{1}}}{\sqrt{1-\cos\theta_{0}}} = \frac{\sin\left(\frac{\theta_{1}}{2}\right)}{\sin\left(\frac{\theta_{0}}{2}\right)}
Mm=θ0θ1θ0+θ1M=θ0θ1θ0+θ1\Rightarrow \frac{M}{m} = \frac{\theta_{0} -\theta_{1}}{\theta_{0} +\theta_{1}} \Rightarrow M = \frac{\theta_{0} -\theta_{1}}{\theta_{0} +\theta_{1}}