Solveeit Logo

Question

Question: A simple pendulum is vibrating with an angular amplitude of π/2. The value of a for which the result...

A simple pendulum is vibrating with an angular amplitude of π/2. The value of a for which the resultant acceleration has a direction along the horizontal is

A

π2\frac { \pi } { 2 }

B

1800

C

cos1(13)\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { 3 } } \right)

D

cos1(12)\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { 2 } } \right)

Answer

cos1(13)\cos ^ { - 1 } \left( \frac { 1 } { \sqrt { 3 } } \right)

Explanation

Solution

Here ar = v21=(2g(1cosα))21\frac { v ^ { 2 } } { 1 } = \frac { ( \sqrt { 2 g ( 1 \cos \alpha ) } ) ^ { 2 } } { 1 }

= 2glcosθ1\frac { 2 g l \cos \theta } { 1 } = 2g cos α

and tan α = arsin90ar+arcos90=2gcosαgsinα\frac { a _ { r } \sin 90 ^ { \circ } } { a _ { r } + a _ { r } \cos 90 ^ { \circ } } = \frac { 2 g \cos \alpha } { g \sin \alpha }

( at = g sin α)

= 2tanα\frac { 2 } { \tan \alpha }

i.e., tan2α = 2 or sec2 α = 3

or cos α = 13\frac { 1 } { \sqrt { 3 } }

or α = cos-1 (13)\left( \frac { 1 } { \sqrt { 3 } } \right)