Solveeit Logo

Question

Question: A simple pendulum has a time period of \(3.0{\rm{ s}}\). If the point of suspension of the pendulum ...

A simple pendulum has a time period of 3.0s3.0{\rm{ s}}. If the point of suspension of the pendulum starts moving vertically upward with a velocity υ=Kt\upsilon = Kt where K=4.4ms2K = 4.4{\rm{ m}}{{\rm{s}}^{ - 2}}, the new time period will be (Take g=10ms2g = 10{\rm{ m}}{{\rm{s}}^{ - 2}})
(1) 94s\dfrac{9}{4}s
(2) 53s\dfrac{5}{3}s
(3) 2.5s2.5s
(4) 4.4s4.4s

Explanation

Solution

Hint: For a simple pendulum in an oscillating motion having the length of the string of the pendulum be ll and the mass of the bob be mm, then the time period TT of the pendulum is given by this relation-
T=2πlgT = 2\pi \sqrt {\dfrac{l}{g}}
Where, gg is the acceleration due to gravity.

Complete step by step answer:
Given:
The time period of given simple pendulum at suspended position T1=3.0s{T_1} = 3.0{\rm{ s}}
Also, from the formula for the time period of the pendulum we have,
T1=2πlg{T_1} = 2\pi \sqrt {\dfrac{l}{g}}
Substituting, T1=3.0s{T_1} = 3.0{\rm{ s}} and g=10ms2g = 10{\rm{ m}}{{\rm{s}}^{ - 2}} in the formula we get,
3.0=2πl10 3.02π=l10\begin{array}{l} 3.0 = 2\pi \sqrt {\dfrac{l}{{10}}} \\\ \dfrac{{3.0}}{{2\pi }} = \sqrt {\dfrac{l}{{10}}} \end{array}
Squaring both sides and solving we get,
(3.02π)2=l10 l=(3.02π)2×10 l=2.28m\begin{array}{l} {\left( {\dfrac{{3.0}}{{2\pi }}} \right)^2} = \dfrac{l}{{10}}\\\ l = {\left( {\dfrac{{3.0}}{{2\pi }}} \right)^2} \times 10\\\ l = 2.28{\rm{ m}} \end{array}
So, the length of the string of the pendulum is 2.28m2.28{\rm{ m}}.
The expression for the upward velocity of the pendulum is given as-
υ=Kt\upsilon = Kt
Where, K=4.4ms2K = 4.4{\rm{ m}}{{\rm{s}}^{ - 2}} and tt is the instantaneous time period.
Now, since the pendulum is moving upwards with a velocity υ\upsilon the acceleration in this direction will be-
a=dυdta = \dfrac{{d\upsilon }}{{dt}}
Substituting the value of υ\upsilon in the expression we get,
a=ddt(Kt)a = \dfrac{d}{{dt}}\left( {Kt} \right)
We can write this as-
a=Kdtdt or a=K\begin{array}{l} a = K\dfrac{{dt}}{{dt}}\\\ {\rm{or}}\\\ a = K \end{array}
We know the value of KK, so substituting K=4.4ms2K = 4.4{\rm{ m}}{{\rm{s}}^{ - 2}} we get,
a=4.4ms2a = 4.4{\rm{ m}}{{\rm{s}}^{ - 2}}
So, for this position of the pendulum the total effective acceleration due to gravity becomes, geff=(g+a){g_{eff}} = \left( {g + a} \right)
We know that, g=10ms2g = 10{\rm{ m}}{{\rm{s}}^{ - 2}} and a=4.4ms2a = 4.4{\rm{ m}}{{\rm{s}}^{ - 2}}, substituting the value we get,
geff=(10+4.4) geff=14.4ms2\begin{array}{l} {g_{eff}} = \left( {10 + 4.4} \right)\\\ {g_{eff}} = 14.4{\rm{ m}}{{\rm{s}}^{ - 2}} \end{array}
Now using the formula for the new period of the pendulum we get,
T2=2πlgeff{T_2} = 2\pi \sqrt {\dfrac{l}{{{g_{eff}}}}}
Substituting the values l=2.28ml = 2.28{\rm{ m}} and geff=14.4ms2{g_{eff}} = 14.4{\rm{ m}}{{\rm{s}}^{ - 2}} in the formula we get,
T2=2π2.2814.4 T2=2π×0.398 T2=2.5s\begin{array}{l} {T_2} = 2\pi \sqrt {\dfrac{{2.28}}{{14.4}}} \\\ \Rightarrow {T_2} = 2\pi \times 0.398\\\ \Rightarrow {T_2} = 2.5{\rm{ s}} \end{array}
Therefore, the new period of the pendulum is 2.5s2.5{\rm{ s}} and the correct answer is (3) 2.5s2.5s

Note: It should be noted that the value of acceleration aa used in calculating the effective acceleration due to gravity geff{g_{eff}} has same value of magnitude but the direction is opposite to the direction of motion of the pendulum i.e. the direction of aa is downwards.