Solveeit Logo

Question

Question: A simple harmonic wave train of amplitude \(2cm\) and time period \(0.01\sec \) is travelling with a...

A simple harmonic wave train of amplitude 2cm2cm and time period 0.01sec0.01\sec is travelling with a velocity of 10ms110m{s^{ - 1}} in the positive x direction. The displacement of the particle from the mean position, the particle velocity and particle acceleration at x=50cmx = 50cm from the origin and at t=3sect = 3\sec are:
A) 0,0,00,0,0
B) 0,400π,00,400\pi ,0
C) 0,0,400π0,0,400\pi
D) 400π,0,0400\pi ,0,0

Explanation

Solution

We have to use equation of simple harmonic motion y=Asin(ωtkx)y = A\sin \left( {\omega t - kx} \right).Using this equation find velocity and acceleration by differentiating it. Insert the given values in the equations then we have our solutions.

Complete step by step solution:
Here given values are amplitude (A) is 2cm2cm
Time period (T) is 0.01sec0.01\sec
Velocity is 10ms110m{s^{ - 1}}
Therefore ω=2πT\omega = \dfrac{{2\pi }}{T} is equal to 2π0.01=200π\dfrac{{2\pi }}{{0.01}} = 200\pi
Now for k=2πλk = \dfrac{{2\pi }}{\lambda } rotation about a point
After all this we have vk=ωvk = \omega
102πλ=2π0.0110\dfrac{{2\pi }}{\lambda } = \dfrac{{2\pi }}{{0.01}}
λ=0.1m\lambda = 0.1m
So from the simple harmonic motion equation y=Asin(ωtkx)y = A\sin \left( {\omega t - kx} \right)
Differentiating both sides
v=dydt=Aωcos(ωtkx)v = \dfrac{{dy}}{{dt}} = A\omega \cos \left( {\omega t - kx} \right)
By again differentiating
a=d2ydt2=Aω2sin(ωtkx)a = \dfrac{{{d^2}y}}{{d{t^2}}} = A{\omega ^2}\sin \left( {\omega t - kx} \right)
Now put all above values in the equation of acceleration
2(200π)2sin(200π×3sec20π)\Rightarrow 2{\left( {200\pi } \right)^2}\sin \left( {200\pi \times 3\sec - 20\pi } \right)
2×400π×sin(600π20π)\Rightarrow 2 \times 400\pi \times \sin \left( {600\pi - 20\pi } \right)
Make angle of sine be the even multiple of 2π2\pi
800π×sin(29×2π)\Rightarrow 800\pi \times \sin \left( {29 \times 2\pi } \right)
As sin2π\sin 2\pi is 0. Therefore
800π×0=0\Rightarrow 800\pi \times 0 = 0
Hence acceleration is zero.
Now put values in velocity equation
v=dydt=Aωcos(ωtkx)v = \dfrac{{dy}}{{dt}} = A\omega \cos \left( {\omega t - kx} \right)
2×200π×cos(200π×320π)\Rightarrow 2 \times 200\pi \times \cos \left( {200\pi \times 3 - 20\pi } \right)
2×200π×cos(600π20π)\Rightarrow 2 \times 200\pi \times \cos \left( {600\pi - 20\pi } \right)
Make angle of cos be the even multiple of 2π2\pi
400π×cos(29×2π)\Rightarrow 400\pi \times \cos \left( {29 \times 2\pi } \right)
As cos2π\cos 2\pi is 1. Therefore,
400π×1=400π\Rightarrow 400\pi \times 1 = 400\pi
Hence velocity is 400π400\pi .
Now for displacement
y=Asin(ωtkx)y = A\sin \left( {\omega t - kx} \right)
Put values in it
2×sin(200π×320π)\Rightarrow 2 \times \sin \left( {200\pi \times 3 - 20\pi } \right)
2×sin(600π20π)\Rightarrow 2 \times \sin \left( {600\pi - 20\pi } \right)
Make angle of sine be the even multiple of 2π2\pi
2×sin(29×2π)\Rightarrow 2 \times \sin \left( {29 \times 2\pi } \right)
As sin2π\sin 2\pi is 0. Therefore
2×0=0\Rightarrow 2 \times 0 = 0
Hence displacement is also zero.
Therefore displacement is 0, velocity is 400π400\pi and acceleration is also 0.

So, option (B) is correct.

Note: Always remember the differentiation of sin and cos. Don’t confuse them if it happens that all values should be wrong. Because at the same values there are different values present. Also when picking options see the correct order of quantities that should be given.