Solveeit Logo

Question

Physics Question on Oscillations

A simple harmonic motion is represented by x(t)=sin2ωt2cos2ωtx(t) = \sin^2 \omega t - 2 \, \cos^2 \, \omega t . The angular frequency of oscillation is given by

A

ω\omega

B

2ω2 \, \omega

C

4ω 4 \, \omega

D

ω/2\omega / 2

Answer

2ω2 \, \omega

Explanation

Solution

x=sin2ωt2cos2ωtx=\sin ^{2} \omega t -2 \cos ^{2} \omega t
=13cos2ωt=1-3 \cos ^{2} \omega t
=13(1+cos2ωt2)=1-3\left(\frac{1+\cos 2 \omega t}{2}\right)
=1232cos2ωt=-\frac{1}{2}-\frac{3}{2} \cos \,2 \,\omega t
which is a periodic function with angular frequency of 2ω2\, \omega.