Solveeit Logo

Question

Question: Show that the Transformation matrix of reflection about line y = x is equivalent to reflection relat...

Show that the Transformation matrix of reflection about line y = x is equivalent to reflection relative to x-axis followed by anticlockwise rotation of 90 degree

Answer

The transformation matrix of reflection about line y = x is equivalent to reflection relative to x-axis followed by anticlockwise rotation of 90 degrees because their transformation matrices are equal.

Explanation

Solution

To show the equivalence of transformations, we determine the transformation matrices for each operation and then perform matrix multiplication.

  1. Transformation Matrix for Reflection about the line y=xy = x

    A point (x,y)(x, y) reflected about the line y=xy = x transforms to (y,x)(y, x). The transformation equations are: x=yx' = y y=xy' = x In matrix form, this is:

    (xy)=(0110)(xy)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}

    So, the transformation matrix for reflection about y=xy = x is My=x=(0110)M_{y=x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.

  2. Transformation Matrix for Reflection relative to the x-axis

    A point (x,y)(x, y) reflected about the x-axis transforms to (x,y)(x, -y). The transformation equations are: x=xx' = x y=yy' = -y In matrix form, this is:

    (xy)=(1001)(xy)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}

    So, the transformation matrix for reflection about the x-axis is Mx=(1001)M_x = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.

  3. Transformation Matrix for Anticlockwise Rotation of 90 degrees

    The general transformation matrix for an anticlockwise rotation by an angle θ\theta is:

    Rθ=(cosθsinθsinθcosθ)R_{\theta} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}

    For an anticlockwise rotation of 9090^\circ (θ=90\theta = 90^\circ): cos90=0\cos 90^\circ = 0 sin90=1\sin 90^\circ = 1

    So, the transformation matrix for 9090^\circ anticlockwise rotation is R90=(0110)R_{90} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.

  4. Combined Transformation Matrix (Reflection relative to x-axis followed by Anticlockwise Rotation of 90 degrees)

    When transformations are applied sequentially, the matrices are multiplied in the reverse order of application. If transformation A is applied first, then B, the combined matrix is MBMAM_B M_A. Here, reflection about the x-axis (MxM_x) is applied first, followed by anticlockwise rotation of 9090^\circ (R90R_{90}). The combined transformation matrix is R90MxR_{90} \cdot M_x:

    R90Mx=(0110)(1001)R_{90} \cdot M_x = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

    Performing the matrix multiplication:

    R90Mx=((0)(1)+(1)(0)(0)(0)+(1)(1)(1)(1)+(0)(0)(1)(0)+(0)(1))R_{90} \cdot M_x = \begin{pmatrix} (0)(1) + (-1)(0) & (0)(0) + (-1)(-1) \\ (1)(1) + (0)(0) & (1)(0) + (0)(-1) \end{pmatrix} R90Mx=(0+00+11+00+0)R_{90} \cdot M_x = \begin{pmatrix} 0+0 & 0+1 \\ 1+0 & 0+0 \end{pmatrix} R90Mx=(0110)R_{90} \cdot M_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

Conclusion

Comparing the combined transformation matrix R90MxR_{90} \cdot M_x with the matrix for reflection about y=xy=x:

R90Mx=(0110)R_{90} \cdot M_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} My=x=(0110)M_{y=x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

Since R90Mx=My=xR_{90} \cdot M_x = M_{y=x}, it is shown that the transformation matrix of reflection about the line y=xy = x is equivalent to reflection relative to the x-axis followed by an anticlockwise rotation of 90 degrees.