Solveeit Logo

Question

Question: (a) Show that \(\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )\) (...

(a) Show that cos3θsin3θ=(cosθ+sinθ)(12sin2θ)\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )
(b) If tanA=56\tan A = \dfrac{5}{6} and tanB=111\tan B = \dfrac{1}{{11}} then show that A+B=π4A + B = \dfrac{\pi }{4} or 5π4\dfrac{{5\pi }}{4}

Explanation

Solution

Here, we have to solve trigonometric functions. In order to solve this questions we first consider left side of the equation and then solve it and prove equals to the right side of the equation by using various trigonometric identities such as cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta , sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta and tan(x+y)=tanx+tany1tanxtany\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}.

Complete step by step answer:
Here, we have to solve trigonometric functions.
(a) we have cos3θsin3θ=(cosθ+sinθ)(12sin2θ)\cos 3\theta - \sin 3\theta = (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )
Consider left side of the equation i.e., cos3θsin3θ\cos 3\theta - \sin 3\theta
We know that cos3θ=4cos3θ3cosθ\cos 3\theta = 4{\cos ^3}\theta - 3\cos \theta and sin3θ=3sinθ4sin3θ\sin 3\theta = 3\sin \theta - 4{\sin ^3}\theta
Substituting these values, we get,
cos3θsin3θ=4cos3θ3cosθ(3sinθ4sin3θ)\Rightarrow \cos 3\theta - \sin 3\theta = 4{\cos ^3}\theta - 3\cos \theta - (3\sin \theta - 4{\sin ^3}\theta )
Rearranging the above equation. We get,
4cos3θ+4sin3θ3cosθ3sinθ\Rightarrow 4{\cos ^3}\theta + 4{\sin ^3}\theta - 3\cos \theta - 3\sin \theta

The above equation can be written as
4(cos3θ+sin3θ)3(cosθ+sinθ)\Rightarrow 4({\cos ^3}\theta + {\sin ^3}\theta ) - 3(\cos \theta + \sin \theta )
Now using the formula (a+b)3=(a+b)(a2ab+b2){(a + b)^3} = (a + b)({a^2} - ab + {b^2}). We get,
4(cosθ+sinθ)(cos2θcosθsinθ+sin2θ)3(cosθ+sinθ)\Rightarrow 4(\cos \theta + \sin \theta )({\cos ^2}\theta - \cos \theta \sin \theta + {\sin ^2}\theta ) - 3(\cos \theta + \sin \theta )
We know that cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1. So,
4(cosθ+sinθ)(1cosθsinθ)3(cosθ+sinθ)\Rightarrow 4(\cos \theta + \sin \theta )(1 - \cos \theta \sin \theta ) - 3(\cos \theta + \sin \theta )

Taking common (cosθ+sinθ)(\cos \theta + \sin \theta ) from the above equation. We get,
(cosθ+sinθ)[4(1cosθsinθ)3]\Rightarrow (\cos \theta + \sin \theta )[4(1 - \cos \theta \sin \theta ) - 3]
Solving the above equation. We get,
(cosθ+sinθ)(44cosθsinθ3)\Rightarrow (\cos \theta + \sin \theta )(4 - 4\cos \theta \sin \theta - 3)
(cosθ+sinθ)(14cosθsinθ)\Rightarrow (\cos \theta + \sin \theta )(1 - 4\cos \theta \sin \theta )
We can write 4cosθsinθ4\cos \theta \sin \theta as 2×2cosθsinθ2 \times 2\cos \theta \sin \theta . So,
(cosθ+sinθ)(12×2cosθsinθ)\Rightarrow (\cos \theta + \sin \theta )(1 - 2 \times 2\cos \theta \sin \theta )
We know that 2cosθsinθ=sin2θ2\cos \theta \sin \theta = \sin 2\theta . So,
(cosθ+sinθ)(12sin2θ)\Rightarrow (\cos \theta + \sin \theta )(1 - 2\sin 2\theta )
Therefore, the left side of the equation is equal to the right side of the equation.
Hence proved

(b) We have tanA=56\tan A = \dfrac{5}{6} and tanB=111\tan B = \dfrac{1}{{11}} and we have to show that A+B=π4A + B = \dfrac{\pi }{4} or 5π4\dfrac{{5\pi }}{4}
Using trigonometric identity tan(x+y)=tanx+tany1tanxtany\tan (x + y) = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}
We have,
tan(A+B)=56+111156×111\tan (A + B) = \dfrac{{\dfrac{5}{6} + \dfrac{1}{{11}}}}{{1 - \dfrac{5}{6} \times \dfrac{1}{{11}}}}
Simplifying the above equation. We get,
tan(A+B)=55+6661566\Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{1 - \dfrac{5}{{66}}}}
On further solving we get,
tan(A+B)=55+66666566\Rightarrow \tan (A + B) = \dfrac{{\dfrac{{55 + 6}}{{66}}}}{{\dfrac{{66 - 5}}{{66}}}}
tan(A+B)=61666166\Rightarrow \tan (A + B) = \dfrac{{\dfrac{{61}}{{66}}}}{{\dfrac{{61}}{{66}}}}

On dividing we get,
tan(A+B)=6166×6661\Rightarrow \tan (A + B) = \dfrac{{61}}{{66}} \times \dfrac{{66}}{{61}}
tan(A+B)=1\Rightarrow \tan (A + B) = 1
Shifting tan\tan to the right side of the equation. We get,
(A+B)=tan11\Rightarrow (A + B) = {\tan ^{ - 1}}1
We know that tan11=π4{\tan ^{ - 1}}1 = \dfrac{\pi }{4}.
(A+B)=π4\Rightarrow (A + B) = \dfrac{\pi }{4}
Therefore, (A+B)=π4(A + B) = \dfrac{\pi }{4}
Hence, proved.

Note: In order to solve these types of questions in which we have to equal both sides of the equation, first check by solving which side of the equation we can get our desired result. One should remember all trigonometric formulas before solving these types of problems. Note that some students are confused in algebraic identity (a+b)3=(a+b)(a2ab+b2){(a + b)^3} = (a + b)({a^2} - ab + {b^2}) there is a subtraction sign also in this identity.