Solveeit Logo

Question

Question: A short spring with a spring constant of \(1000N{{m}^{-1}}\) is compressed by \(0.1m\). How high abo...

A short spring with a spring constant of 1000Nm11000N{{m}^{-1}} is compressed by 0.1m0.1m. How high above the starting point will a 0.2kg0.2kg mass rise if fired vertically by this spring?

Explanation

Solution

A spring is compressed or displaced from its mean position due to which it gains some potential energy. When the spring is released and a mass is kept at the starting point, the potential energy of the spring is transferred to the mass. Therefore, equating the potential energies of both the spring and the mass, height can be calculated.
Formula used:
12kx2=mgh\dfrac{1}{2}k{{x}^{2}}=mgh

Complete answer:
When the spring is compressed or expanded, it is displaced from its mean position due to which it gains potential energy by virtue of its compression or expansion. When an object is kept at the starting point and the spring is released, the potential energy of the spring gets transferred to the object
The spring’s potential energy is calculated as-
P=12kx2P=\dfrac{1}{2}k{{x}^{2}}
Here, PP is the potential energy
kk is the spring constant
xx is the displacement of the spring
Therefore,
12kx2=mgh\dfrac{1}{2}k{{x}^{2}}=mgh -(1)
Here, mm is the mass of the body
gg is the acceleration due to gravity
hh is the height
Given, k=1000Nm1k=1000N{{m}^{-1}}, x=0.1mx=0.1m, M=0.2kgM=0.2kg, g=10ms2g=10m{{s}^{-2}}.
Substituting given values in eq (1) equation, we get,
12×1000(101)2=0.2×10h 500×102=2h 2.5m=h \begin{aligned} & \dfrac{1}{2}\times 1000{{({{10}^{-1}})}^{2}}=0.2\times 10h \\\ & \Rightarrow 500\times {{10}^{-2}}=2h \\\ & \therefore 2.5m=h \\\ \end{aligned}
The object will move to a maximum height of 2.5m2.5m.
Therefore, the mass will rise to a height of 2.5m2.5m when kept at the starting point of the compressed spring.

Note:
The oscillation of spring is a harmonic motion which works on the principle that the force is directly proportional to the negative of displacement. A recoil force is developed in the spring when displaced from its mean position which brings it back to its original position. This force acts on the mass and fires it upto a certain height.