Solveeit Logo

Question

Physics Question on Ray optics and optical instruments

A short linear object of length b lies along the axis of a concave mirror of focal length ff at a distance uu from the pole of the mirror, what is the size of image?

A

(fuf)b\left( \frac{f}{u-f} \right)b

B

(fuf)2b{{\left( \frac{f}{u-f} \right)}^{2}}b

C

(fuf)2\left( \frac{f}{u-f} \right){^{2}}

D

(fuf)\left( \frac{f}{u-f} \right)

Answer

(fuf)2\left( \frac{f}{u-f} \right){^{2}}

Explanation

Solution

Using the relation for the focal length of concave mirror 1f=1v+1u...(1)\frac{1}{f}=\frac{1}{v}+\frac{1}{u}\,\,\,\,...(1) Differentiating equation (1), we obtain 0=1v2dv1u2du0=-\frac{1}{v^{2}} d v-\frac{1}{u^{2}} d u So, dv=v2u2×b...(2)d v=-\frac{v^{2}}{u^{2}} \times b\,\,\,...(2) (Here: du=bd u=b ) From equation (1) 1v=1f1u=uffu\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{u-f}{f u} or uv=uff\frac{u}{v}=\frac{u-f}{f} vu=fuf...(3)\frac{v}{u}=\frac{f}{u-f} \,\,\,\,...(3) Now, from equations (2) and (3), we get dv=(fuf)2bd v=-\left(\frac{f}{u-f}\right)^{2} b Therefore, size or image is =(fuf)2b=\left(\frac{f}{u-f}\right)^{2} b