Solveeit Logo

Question

Mathematics Question on Probability

A ship is fitted with three engines E1,E2 E_1, E_2 and E3E_3 The engines function independently of each other with respective probabilities 12,14\frac {1}{2}, \frac {1}{4} and 14\frac{1}{4}. For the ship to be operational at least two of its engines must function. Let XX denotes the event that the ship is operational and let X1,X2X_1 , X _2 and X3X_ 3 denote, respectively the events that the engines E1,E2 E_1 , E_2 and E3E_3 are functioning. Which of the following is/are true?

A

P[X1cX]=316P [ X_1^c | X ] = \frac {3} {16}

B

PP [exactly two engines of the ship are functioning] =78= \frac{7}{8}

C

P[XX2]=516P[ X|X _2]= \frac{5}{16}

D

P[XX1]=716P[ X|X _1]= \frac{7}{16}

Answer

P[XX1]=716P[ X|X _1]= \frac{7}{16}

Explanation

Solution

PLAN It is based on law of to ta l probability and Bay 's Law Description of Situation It is given that ship would
work if atleast two of engines must work. If X be event
that the ship works. Then, XX \Rightarrow either any two of E1,E2,E3E_1 , E_2 ,E_3 works or all three engines E1,E2,E3E_1, E_2, E_3 works
Given , P(E1)=12,P(E2)=14,P(E3)=14P(E_1) = \frac{1}{2} , P(E_2) = \frac{1}{4} ,P(E_3) = \frac{1}{4}
\therefore \ \ \ \ \ \ \ \ \ P(X) = \bigg \\{ \begin{array} \ P(E_1 \cap E_2 \cap \overline{E_3}) + P(E_1 \cap \overline{ E_2} \cap E_3) \\\ \+ P(\overline {E_1} \cap E_2 \cap E_3 ) + P(E_1 \cap E_2 \cap E_3) \\\ \end{array} \bigg \\}.
=(12.14.34+12.34.14+12.14.14)+(12.14.14)14= \bigg ( \frac{1}{2} . \frac{1}{4} . \frac{3}{4} + \frac{1}{2}. \frac{3}{4}. \frac{1}{4} + \frac{1}{2}. \frac{1}{4}. \frac{1}{4} \bigg ) + \bigg( \frac{1}{2}. \frac{1}{4}. \frac{1}{4} \bigg) \frac{1}{4}
Now , (a)P(X1cX)(a) P(X_1^c | X)
P(X1cXP(X)=P(E1E2E3)P(X)=12.14.141=18P\bigg( \frac{ X_1^c \cap X}{P(X)} = \frac{P(\overline {E_1} \cap E_2 \cap E_3 )}{ P(X)} = \frac{ \frac{ 1}{2} . \frac{ 1}{4}. \frac{ 1}{4}}{1} = \frac{ 1}{8}
(c)P(XX2=P(XX2)P(X2)( c ) P \bigg( \frac{ X}{X_2} = \frac{ P(X \cap X_2)}{ P( X_2)}
=P(ship is operating withE2 function)P(X2)= \frac{ P (ship \ is \ operating \ with E _2 \ function)}{P(X_2)}
=P(E1E2E3)+P(E1E2E3)+P(E1E2E3)P(E2)= \frac{ P(E_1 \cap E_2 \cap \overline{E_3}) + P( \overline{E_1} \cap E_2 \cap E_3) + P(E_1 \cap E_2 \cap E_3) }{ P( E _2)}
12.14.34+12.14.14+12.14.1414=58\frac{ \frac{1}{2}. \frac{1}{4}. \frac{3}{4}+ \frac{1}{2}. \frac{1}{4}. \frac{1}{4}+ \frac{1}{2}. \frac{1}{4}. \frac{1}{4} }{ \frac{1}{4}} = \frac{5}{8}
(d) (PX/X1)=P(XX1)PX1(PX / X_1) = \frac{ P (X \cap X_1)}{PX_1}
12.14.14+12.34.14+12.14.3412=716\frac{ \frac{1}{2}. \frac{1}{4}. \frac{1}{4}+ \frac{1}{2}. \frac{3}{4}. \frac{1}{4}+ \frac{1}{2}. \frac{1}{4}. \frac{3}{4}}{ \frac{1}{2}} = \frac{7}{16}