Question
Question: A series R - L - C \[\left( R=10\Omega ~,{{X}_{L}}=20\Omega ,{{X}_{c}}=20\Omega \right)\] circuit is...
A series R - L - C (R=10Ω ,XL=20Ω,Xc=20Ω) circuit is supplied by V=sinωt Volt then power dissipation in circuit is,
A. Zero Watt
B.10 Watt
C. 5 Watt
D. 2.5 Watt
Solution
Power dissipated in a R-L-C circuit can be expressed in terms of rms current and voltage.
When XL=XC resonance occurs in the RLC circuit .Then the impedance of the R-L-C circuit will be equal to the value of resistance connected to that circuit.
Formula used:
Power dissipated, P = irmsErmscosΦ
tanΦ=RXL−XC
Irms=2Io
Erms=2Eo
Vrms=2Vo
P=Z2Vrms2R
Complete answer:
Let us draw the R-L-C diagram,
Given,
R=10Ω
XL=20Ω
Xc=20Ω
V=sinωt Volt
Power dissipated, P = irmsErmscosΦ ------ 1
HereXL=Xc=20Ω,
Hence the impedance diagram can be drawn as
Therefore,
Impedance, Z=R ------ 2
The phase angle between the voltage and current is represented by Φ. The tangent of this angle is given by,
tanΦ=RXL−XC
Substitute the values of XL,XC, R
We get,
tanΦ=1020−20=0
Φ=0
Then,
cosΦ=cos0=1 ------- 3
Now, we need to find the values ofirms and Erms.
i0=ZV0=R10=1010=1A
Then,
irms2Io=21A --------- 4
Erms2Eo=210V ----------5
Substitute equations 3, 4, and 5 in equation 1
Power dissipated, P= irmsErmscosΦ
P=21×210×1=210=5W
So, the correct answer is “Option C”.
Note:
Alternate method to solve the question.
We have power dissipation,
P=Z2Vrms2R --------- 1
Vrms=2V0=210 ---------- 2
Here, Z=R=10 --------- 3
Substituting equation 2 and 3 in equation 1.
P=102(210)2×10=100500=5W