Solveeit Logo

Question

Question: A series R - L - C \[\left( R=10\Omega ~,{{X}_{L}}=20\Omega ,{{X}_{c}}=20\Omega \right)\] circuit is...

A series R - L - C (R=10Ω ,XL=20Ω,Xc=20Ω)\left( R=10\Omega ~,{{X}_{L}}=20\Omega ,{{X}_{c}}=20\Omega \right) circuit is supplied by V=sinωt VoltV=\sin \omega t\text{ Volt} then power dissipation in circuit is,
A. Zero Watt\text{A}\text{. Zero Watt}
B.10 Watt\text{B}\text{.10 Watt}
C. 5 Watt\text{C}\text{. 5 Watt}
D. 2.5 Watt\text{D}\text{. 2}\text{.5 Watt}

Explanation

Solution

Power dissipated in a R-L-C circuit can be expressed in terms of rms current and voltage.
When XL=XC{{X}_{L}}={{X}_{C}} resonance occurs in the RLC circuit .Then the impedance of the R-L-C circuit will be equal to the value of resistance connected to that circuit.
Formula used:
Power dissipated, P = irmsErmscosΦ\text{Power dissipated, P = }{{\text{i}}_{rms}}{{E}_{rms}}\cos \Phi
tanΦ=XLXCR\tan \Phi =\dfrac{{{X}_{L}}-{{X}_{C}}}{R}
Irms=Io2{{I}_{rms}}=\dfrac{{{I}_{o}}}{\sqrt{2}}
Erms=Eo2{{E}_{rms}}=\dfrac{{{E}_{o}}}{\sqrt{2}}
Vrms=Vo2{{V}_{rms}}=\dfrac{{{V}_{o}}}{\sqrt{2}}
P=Vrms2Z2RP=\dfrac{V_{rms}^{2}}{{{Z}^{2}}}R

Complete answer:
Let us draw the R-L-C diagram,


Given,
R=10ΩR=10\Omega
XL=20Ω{{X}_{L}}=20\Omega
Xc=20Ω{{X}_{c}}=20\Omega
V=sinωt VoltV=\sin \omega t\text{ Volt}
Power dissipated, P = irmsErmscosΦ\text{Power dissipated, P = }{{\text{i}}_{rms}}{{E}_{rms}}\cos \Phi ------ 1
HereXL=Xc=20Ω{{X}_{L}}={{X}_{c}}=20\Omega ,
Hence the impedance diagram can be drawn as
Therefore,
Impedance, Z=R\text{Impedance, Z=R} ------ 2
The phase angle between the voltage and current is represented by Φ\Phi . The tangent of this angle is given by,
tanΦ=XLXCR\tan \Phi =\dfrac{{{X}_{L}}-{{X}_{C}}}{R}
Substitute the values of XL{{X}_{L}},XC{{X}_{C}}, RR
We get,
tanΦ=202010=0\tan \Phi =\dfrac{20-20}{10}=0
Φ=0\Phi =0
Then,
cosΦ=cos0=1\cos \Phi =\cos 0=1 ------- 3
Now, we need to find the values ofirms and Erms{{\text{i}}_{rms}}\text{ and }{{E}_{rms}}.
i0=V0Z=10R=1010=1A{{i}_{0}}=\dfrac{{{V}_{0}}}{Z}=\dfrac{10}{R}=\dfrac{10}{10}=1A
Then,
irmsIo2=12A{{\text{i}}_{rms}}\dfrac{{{I}_{o}}}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}A --------- 4
ErmsEo2=102V{{E}_{rms}}\dfrac{{{E}_{o}}}{\sqrt{2}}=\dfrac{10}{\sqrt{2}}V ----------5
Substitute equations 3, 4, and 5 in equation 1
Power dissipated, P= irmsErmscosΦ\text{Power dissipated, P= }{{\text{i}}_{rms}}{{E}_{rms}}\cos \Phi
P=12×102×1=102=5WP=\dfrac{1}{\sqrt{2}}\times \dfrac{10}{\sqrt{2}}\times 1=\dfrac{10}{2}=5W

So, the correct answer is “Option C”.

Note:
Alternate method to solve the question.
We have power dissipation,
P=Vrms2Z2RP=\dfrac{V_{rms}^{2}}{{{Z}^{2}}}R --------- 1
Vrms=V02=102{{V}_{rms}}=\dfrac{{{V}_{0}}}{\sqrt{2}}=\dfrac{10}{\sqrt{2}} ---------- 2
Here, Z=R=10Z=R=10 --------- 3
Substituting equation 2 and 3 in equation 1.
P=(102)2102×10=500100=5WP=\dfrac{{{\left( \dfrac{10}{\sqrt{2}} \right)}^{2}}}{{{10}^{2}}}\times 10=\dfrac{500}{100}=5W