Solveeit Logo

Question

Question: A series of chords of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\), are tangents ...

A series of chords of the hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1, are tangents to the circle described on the line joining the foci as diameter. The locus of their poles w.r.t. the hyperbola is

A

x2a4+y2b4=1a2+b2\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{a^{2} + b^{2}}

B

x2a2+y2b2=1a2+b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = \frac{1}{a^{2} + b^{2}}

C

x2a4y2b4=1a2+b2\frac{x^{2}}{a^{4}} - \frac{y^{2}}{b^{4}} = \frac{1}{a^{2} + b^{2}}

D

None of these

Answer

x2a4+y2b4=1a2+b2\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{a^{2} + b^{2}}

Explanation

Solution

Equation of the hyperbola is x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1... (1)

Its foci are (ae, 0) and (- ae, 0).

Equation of the circle on the join of foci as diameter is

(x - ae) (x + ae) + (y - 0) (y - 0) = 0

or x2 + y2 = a2e2 ... (2)

Let (x1, y1) be the pole of a chord of (1).

Equation of chord i.e. polar of (x1, y1) w.r.t. (1) is xx1a2yy1b2=1\frac{xx_{1}}{a^{2}} - \frac{yy_{1}}{b^{2}} = 1. ... (3)

Since it touches the circle (2), the length of ⊥ from the centre (0, 0) of (2) on (3) is equal to radius ae.

±1x12a4+y12b4=ae\pm \frac{1}{\sqrt{\frac{x_{1}^{2}}{a^{4}} + \frac{y_{1}^{2}}{b^{4}}}} = ae

or x12a4+y12b4=1a2e2=1a2+b2.[e2=a2+b2a2]\frac{x_{1}^{2}}{a^{4}} + \frac{y_{1}^{2}}{b^{4}} = \frac{1}{a^{2}e^{2}} = \frac{1}{a^{2} + b^{2}}.\left\lbrack \because e^{2} = \frac{a^{2} + b^{2}}{a^{2}} \right\rbrack.

∴ Locus of (x1, y1) is x2a4+y2b4=1a2+b2\frac{x^{2}}{a^{4}} + \frac{y^{2}}{b^{4}} = \frac{1}{a^{2} + b^{2}}.