Question
Physics Question on Oscillations
A series LCR circuit is connected to a 45 sin (ωt) volt source. The resonant angular frequency of the circuit is 105 rad/sec and the current amplitude at resonance is I0. When the angular frequency of the source is ω = 8 x 104 rad/sec, the current amplitude in the circuit is 0.05 I0. If m = 50 mH, match each entry in the list - I with an approximate value from list - II and choose the option.
| List - I| | List - II
---|---|---|---
(P)| I0 in mA| (1)| 44.4
(Q)| The quality factor of the circuit| (2)| 18
(R)| The bandwidth of the circuit in rad/sec| (3)| 400
(S)| The peak power dissipated at resonance in watt| (4)| 2250
| | (5)| 500
P | Q | R | S |
---|---|---|---|
4 | 3 | 2 | 1 |
P | Q | R | S |
---|---|---|---|
2 | 1 | 3 | 4 |
P | Q | R | S |
---|---|---|---|
3 | 1 | 2 | 5 |
P | Q | R | S |
---|---|---|---|
3 | 1 | 4 | 2 |
P | Q | R | S |
---|---|---|---|
3 | 1 | 4 | 2 |
Solution
The correct option is: (D)
E=45sinωt
ωrL=ωrC1
ωr2=LC1
(105)2=50×10−3×C1
1010=5×10−2C1⇒c=2×10−9F
at ω=8×104rad/sec
XL=ωL=8×104×50×10−3=4000Ω
XC=ωc1=8×104×2×10−91=6250Ω
X=XC−XL=2250Ω
Also,
0.05I0=Z45
0.5×R45=Z45
Z=0.05R
R2+x2=20R
R2+x2=400R2
⇒R=112.6Ω(asx=2250Ω)
(P)I0=112.645A=112.645×1000mA≈400mA
(Q)Qfactor=RΩr×L=112.6105×50×10−3=44.4
(R) B and width = LR=2250rad/sec
(S) Peek power at resonance = R(45)2=112.6452≈18ω