Solveeit Logo

Question

Physics Question on Oscillations

A series LCR circuit is connected to a 45 sin (ωt) volt source. The resonant angular frequency of the circuit is 105 rad/sec and the current amplitude at resonance is I0. When the angular frequency of the source is ω = 8 x 104 rad/sec, the current amplitude in the circuit is 0.05 I0. If m = 50 mH, match each entry in the list - I with an approximate value from list - II and choose the option.

| List - I| | List - II
---|---|---|---
(P)| I0 in mA| (1)| 44.4
(Q)| The quality factor of the circuit| (2)| 18
(R)| The bandwidth of the circuit in rad/sec| (3)| 400
(S)| The peak power dissipated at resonance in watt| (4)| 2250
| | (5)| 500

A
PQRS
4321
B
PQRS
2134
C
PQRS
3125
D
PQRS
3142
Answer
PQRS
3142
Explanation

Solution

The correct option is: (D)
E=45sinωtE=45\,sin\omega t
ωrL=1ωrC\omega_rL=\frac{1}{\omega_rC}
ωr2=1LC\omega_r^2=\frac{1}{LC}
(105)2=150×103×C(10^5)^2=\frac{1}{50\times10^{-3}\times C}
1010=15×102Cc=2×109F10^{10}=\frac{1}{5\times10^{-2}C}\Rightarrow c=2\times10^{-9}F
at ω=8×104rad/sec\omega=8\times10^4\,rad/sec
XL=ωL=8×104×50×103=4000ΩX_L=\omega_L=8\times10^4\times50\times10^{-3}=4000\Omega
XC=1ωc=18×104×2×109=6250ΩX_C=\frac{1}{\omega_c}=\frac{1}{8\times10^4\times2\times10^{-9}}=6250\Omega
X=XCXL=2250ΩX=X_C-X_L=2250\Omega

Also,

0.05I0=45Z0.05I_0=\frac{45}{Z}

0.5×45R=45Z0.5\times \frac{45}{R}=\frac{45}{Z}

Z=R0.05Z=\frac{R}{0.05}
R2+x2=20R\sqrt{R^2+x^2}=20R

R2+x2=400R2R^2+x^2=400R^2

R=112.6Ω(asx=2250Ω)\Rightarrow R=112.6\Omega\,\,\,\,(as\, x=2250\Omega)

(P)I0=45112.6A=45×1000112.6mA400mA(P)I_0=\frac{45}{112.6}A=\frac{45\times1000}{112.6}mA\approx400mA

(Q)Qfactor=Ωr×LR=105×50×103112.6=44.4(Q)Q_{factor}=\frac{\Omega_r\times L}{R}=\frac{10^5\times50\times10^{-3}}{112.6}=44.4

(R)(R) B and width = RL=2250rad/sec\frac{R}{L}=2250\,rad/sec

(S)(S) Peek power at resonance = (45)2R=452112.618ω\frac{(45)^2}{R}=\frac{45^2}{112.6}\approx 18\omega