Solveeit Logo

Question

Question: A series LCR circuit has R= 5\(\Omega,\) L= 40mH and C=1 \(\mu\)F, the bandwidth of the circuit is...

A series LCR circuit has R= 5Ω,\Omega, L= 40mH and C=1 μ\muF, the bandwidth of the circuit is

A

10Hz

B

20Hz

C

30Hz

D

40Hz

Answer

20Hz

Explanation

Solution

: Resonant angular frequency

ωr=1LC\omega_{r} = \frac{1}{\sqrt{LC}} …(i)

Quality factor,

Q=ResonantangularfrequencyBandwidthQ = \frac{{Re}sonantangularfrequency}{Bandwidth}

Bandwidth,=υ2υ1=υrQ= \upsilon_{2} - \upsilon_{1} = \frac{\upsilon_{r}}{Q} …(ii)

Where, υr=\upsilon_{r} = resonant frequency=12πLC= \frac{1}{2\pi\sqrt{LC}}

Q = quality factor.

Also, Q=ωrLRQ = \frac{\omega_{r}L}{R}

υ2υ1=υrR2πυrL=R2πL\therefore\upsilon_{2} - \upsilon_{1} = \frac{\upsilon_{r}R}{2\pi\upsilon_{r}L} = \frac{R}{2\pi L} (Using (i) and (ii))

υ2υ1=R2πL=52π×40×103=20Hz\upsilon_{2} - \upsilon_{1} = \frac{R}{2\pi L} = \frac{5}{2\pi \times 40 \times 10^{- 3}} = 20Hz