Solveeit Logo

Question

Question: A series LCR circuit containing a resistance of 120 $\Omega$ has angular resonance frequency 4 × $10...

A series LCR circuit containing a resistance of 120 Ω\Omega has angular resonance frequency 4 × 10510^5 rad/sec. At resonance the voltages across resistance and inductance are 60 V and 40 V respectively, then choose the correct option/s.

A

The value of L = 2 × 10410^{-4} H

B

The value of C = 132\frac{1}{32} × 10610^{-6} F

C

At angular frequency 8 × 10510^5 rad/s the current will lag by 3030^\circ w.r.t. voltage

D

At angular frequency 8 × 10510^5 rad/s the current will lag by 4545^\circ w.r.t. voltage

Answer

A, B, and D

Explanation

Solution

Explanation:

  1. Calculate the current (I) at resonance:

    At resonance, the circuit behaves purely resistively. The voltage across the resistance (VRV_R) is given as 60 V and the resistance (R) is 120 Ω\Omega. Using Ohm's law: I=VRR=60V120Ω=0.5AI = \frac{V_R}{R} = \frac{60 \, \text{V}}{120 \, \Omega} = 0.5 \, \text{A}

  2. Calculate the Inductance (L):

    At resonance, the voltage across the inductance (VLV_L) is given as 40 V. The inductive reactance (XLX_L) at resonance is XL=ω0LX_L = \omega_0 L, where ω0\omega_0 is the angular resonance frequency (4 × 10510^5 rad/s). VL=IXL=I(ω0L)V_L = I \cdot X_L = I \cdot (\omega_0 L) 40V=0.5A(4×105rad/sL)40 \, \text{V} = 0.5 \, \text{A} \cdot (4 \times 10^5 \, \text{rad/s} \cdot L) L=400.5×4×105=402×105=20×105H=2×104HL = \frac{40}{0.5 \times 4 \times 10^5} = \frac{40}{2 \times 10^5} = 20 \times 10^{-5} \, \text{H} = 2 \times 10^{-4} \, \text{H} Therefore, option A is correct.

  3. Calculate the Capacitance (C):

    At resonance, the inductive reactance equals the capacitive reactance (XL=XCX_L = X_C). ω0L=1ω0C\omega_0 L = \frac{1}{\omega_0 C} C=1ω02LC = \frac{1}{\omega_0^2 L} Substitute the values of ω0\omega_0 and L: C=1(4×105rad/s)2×(2×104H)C = \frac{1}{(4 \times 10^5 \, \text{rad/s})^2 \times (2 \times 10^{-4} \, \text{H})} C=1(16×1010)×(2×104)=132×106F=132×106FC = \frac{1}{(16 \times 10^{10}) \times (2 \times 10^{-4})} = \frac{1}{32 \times 10^6} \, \text{F} = \frac{1}{32} \times 10^{-6} \, \text{F} Therefore, option B is correct.

  4. Calculate the phase angle at angular frequency ω=8×105\omega = 8 \times 10^5 rad/s:

    First, calculate the new inductive reactance (XLX_L') and capacitive reactance (XCX_C'): XL=ωL=(8×105rad/s)×(2×104H)=160ΩX_L' = \omega L = (8 \times 10^5 \, \text{rad/s}) \times (2 \times 10^{-4} \, \text{H}) = 160 \, \Omega XC=1ωC=1(8×105rad/s)×(132×106F)X_C' = \frac{1}{\omega C} = \frac{1}{(8 \times 10^5 \, \text{rad/s}) \times (\frac{1}{32} \times 10^{-6} \, \text{F})} XC=1(8/32)×101=1(1/4)×0.1=10.25×0.1=10.025=40ΩX_C' = \frac{1}{(8/32) \times 10^{-1}} = \frac{1}{(1/4) \times 0.1} = \frac{1}{0.25 \times 0.1} = \frac{1}{0.025} = 40 \, \Omega

    Now, calculate the phase angle (ϕ\phi) using the formula: tanϕ=XLXCR\tan \phi = \frac{X_L' - X_C'}{R} tanϕ=160Ω40Ω120Ω=120Ω120Ω=1\tan \phi = \frac{160 \, \Omega - 40 \, \Omega}{120 \, \Omega} = \frac{120 \, \Omega}{120 \, \Omega} = 1 ϕ=arctan(1)=45\phi = \arctan(1) = 45^\circ Since XL>XCX_L' > X_C', the circuit is inductive, meaning the current lags the voltage. Therefore, at angular frequency 8 × 10510^5 rad/s, the current will lag by 45° w.r.t. voltage. Option D is correct, and option C is incorrect.