Solveeit Logo

Question

Physics Question on Alternating current

A series ACAC circuit containing an inductor (20mH)(20\, mH), a capacitor (120  μF)(120 \; \mu F) and a resistor (60Ω)(60 \Omega) is driven by an AC source of 24V/50Hz24\, V/50 \,Hz. The energy dissipated in the circuit in 60s60\, s is :

A

2.26×103  J2.26 \times 10^3 \; J

B

3.39×103  J3.39 \times 10^3 \; J

C

5.65×102  J5.65 \times 10^2 \; J

D

5.17×102  J5.17 \times 10^2 \; J

Answer

5.17×102  J5.17 \times 10^2 \; J

Explanation

Solution

R=60Ωf=50Hz,ω=2πf=100πR = 60 \Omega \, f = 50 Hz , \omega = 2\pi f = 100 \pi
xC=1ωC=1100π×120×106x_{C} = \frac{1}{\omega C} = \frac{1}{100 \pi \times120 \times10^{-6}}
xC=26.52Ωx_{C} =26.52 \Omega
xL=ωL=100π×20×103=2πΩx_{L} =\omega L = 100 \pi \times20 \times10^{-3} = 2 \pi\Omega
xCxL=20.2420x_{C} - x_{L} = 20.24 \approx 20
z=R2+(xCxL)2z = \sqrt{R^{2} + \left(x_{C} -x_{L}\right)^{2}}
z=2010Ωz = 20 \sqrt{10} \Omega
cosϕ=Rz=310\cos\phi = \frac{R}{z} = \frac{3}{\sqrt{10} }
Pavg=VIcosϕ,I=vzP_{avg } = VI \cos \phi , I = \frac{v}{z}
=v2zcosϕ= \frac{v^{2}}{z} \cos \phi
=8.64= 8.64 watt
Q=P.t=8.64×60=5.18×102Q = P.t = 8.64 \times 60 = 5.18 \times 10^2