Solveeit Logo

Question

Physics Question on Semiconductor electronics: materials, devices and simple circuits

A semiconductor having electron and hole mobilities μn\mu_{n} and μp\mu_{p} respectively. if its intrinsic carrier density is nin_{i}, then what will be the value of hole concentration PP for which the conductivity will be minimum at a given temperature?

A

niμnμpn_{i} \sqrt{\frac{\mu_{n}}{\mu_{p}}}

B

nhμnμpn_{h} \sqrt{\frac{\mu_{n}}{\mu_{p}}}

C

niμpμnn_{i} \sqrt{\frac{\mu_{p}}{\mu_{n}}}

D

nhμpμnn_{h} \sqrt{\frac{\mu_{p}}{\mu_{n}}}

Answer

niμnμpn_{i} \sqrt{\frac{\mu_{n}}{\mu_{p}}}

Explanation

Solution

The overall conductivity of a semiconductor is σ=neeμe+npeμp\sigma=n_{e} e \mu_{e}+n_{p} e \mu_{p} σ=e[μene+npμp]\sigma=e\left[\mu_{e} n_{e}+n_{p} \mu_{p}\right] Also nenp=ni2n_{e} n_{p}=n_{i}^{2} (For an intrinsic semiconductor) ne=ni2npn_{e}=\frac{n_{i}^{2}}{n_{p}} Now, σ=e[ni2npμn+μpnp] \sigma=e\left[\frac{n_{i}^{2}}{n_{p}} \mu_{n}+\mu_{p} n_{p}\right] On differentiating, dσdnp=e[ni2np2μn+μp]=0\frac{d \sigma}{d n_{p}} =e\left[\frac{n_{i}^{2}}{n_{p}^{2}} \mu_{n}+\mu_{p}\right]=0 μp=ni2np2μn\Rightarrow \mu_{p} =\frac{n_{i}^{2}}{n_{p}^{2}} \mu_{n} np=niμnμp\Rightarrow n_{p}=n_{i} \sqrt{\frac{\mu_{n}}{\mu_{p}}}