Solveeit Logo

Question

Question: A school wants to award its students for the values of Honesty, Regularity and Hard work with a tota...

A school wants to award its students for the values of Honesty, Regularity and Hard work with a total cash award of Rs 6,000. Three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. The award money given for Honesty and Hard work together is double the one given for Regularity. Represent the above situation algebraically and find the award money for each value, using matrix method. Apart from these values, namely, Honesty, Regularity and Hard work, suggest one more value which the school must include for awards.

Explanation

Solution

We start solving the above problem by taking the values of Honesty, Regularity and Hard work as x,yx,y and zzrespectively. Then, we represent the above given statements in algebraic forms. We get a system of three linear equations. We represent them in the matrix form AX=BAX=B. We have to find the solution that is, matrix X=A1BX={{A}^{-1}}B. Before finding the solution, we make sure that the matrix A1{{A}^{-1}} exists by checking whether the determinant of matrix AA is zero or not. After making sure that the determinant of matrix AA is not equal to zero, we find the matrix A1{{A}^{-1}} using the formula 1AAdj(A)\dfrac{1}{\left| A \right|}Adj\left( A \right). Then we obtain the final result XX using the formula X=A1BX={{A}^{-1}}B.

Complete step by step answer:
We were given that the total cash award for the values of Honesty, Regularity and Hard work is Rs 6,000. So, we get,
x+y+z=6000............(1)\Rightarrow x+y+z=6000............\left( 1 \right)
And we were also given that three times the award money for Hard work added to that given for honesty amounts to Rs 11,000. So, we get,
x+3z=11000.............(2)\Rightarrow x+3z=11000.............\left( 2 \right)
We were also given that the award money given for Honesty and Hard work together is double the one given for Regularity. So, we get,
x+z=2y x2y+z=0...............(3) \begin{aligned} & \Rightarrow x+z=2y \\\ & \Rightarrow x-2y+z=0...............\left( 3 \right) \\\ \end{aligned}
Now, we represent this system of linear equations in matrix form that is in form of, AX=BAX=B as
A=[111 103 121 ]A=\left[ \begin{matrix} 1 & 1 & 1 \\\ 1 & 0 & 3 \\\ 1 & -2 & 1 \\\ \end{matrix} \right] , X=[x y z ]X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right], B=[6000 11000 0 ]B=\left[ \begin{matrix} 6000 \\\ 11000 \\\ 0 \\\ \end{matrix} \right]
So, let us check whether the determinant is equal to zero or not equal to zero.
Now, let us consider the formula,
a11a12a13 a21a22a23 a31a32a33 =a11(a22a33a23a32)a21(a12a33a13a32)+a31(a12a23a13a22)\left| \begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\\ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\\ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\\ \end{matrix} \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)-{{a}_{21}}\left( {{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} \right)+{{a}_{31}}\left( {{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} \right)
By using the above formula,
A=111 103 121 =1(0+6)1(1+2)+1(30) A=1(6)1(3)+1(3) A=63+3 A=6 \begin{aligned} & \left| A \right|=\left| \begin{matrix} 1 & 1 & 1 \\\ 1 & 0 & 3 \\\ 1 & -2 & 1 \\\ \end{matrix} \right|=1\left( 0+6 \right)-1\left( 1+2 \right)+1\left( 3-0 \right) \\\ & \left| A \right|=1\left( 6 \right)-1\left( 3 \right)+1\left( 3 \right) \\\ & \left| A \right|=6-3+3 \\\ & \left| A \right|=6 \\\ \end{aligned}
So, we got
A0\left| A \right|\ne 0
So, we can say that A1{{A}^{-1}}exists.
Let us consider the formula,
A1=1AAdjA{{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA
So now, we find the matrix AdjAAdjA
To find the adjoint of a matrix, first we find the cofactor matrix of the given matrix. Then we find the transpose of the cofactor matrix.
We have, A=[111 103 121 ]A=\left[ \begin{matrix} 1 & 1 & 1 \\\ 1 & 0 & 3 \\\ 1 & -2 & 1 \\\ \end{matrix} \right]
Let us find the cofactor matrix for A first.
Cofactor of 1 = 03 21 =0(1)3(2)=6\left| \begin{matrix} 0 & 3 \\\ -2 & 1 \\\ \end{matrix} \right|=0\left( 1 \right)-3\left( -2 \right)=6
Cofactor of 1 = 13 11 =(1(1)3(1))=2-\left| \begin{matrix} 1 & 3 \\\ 1 & 1 \\\ \end{matrix} \right|=-\left( 1\left( 1 \right)-3\left( 1 \right) \right)=2
Cofactor of 1 = 10 12 =1(2)0(1)=2\left| \begin{matrix} 1 & 0 \\\ 1 & -2 \\\ \end{matrix} \right|=1\left( -2 \right)-0\left( 1 \right)=-2
Cofactor of 1 = 11 21 =(1(1)1(2))=3-\left| \begin{matrix} 1 & 1 \\\ -2 & 1 \\\ \end{matrix} \right|=-\left( 1\left( 1 \right)-1\left( -2 \right) \right)=-3
Cofactor of 0 = 11 11 =1(1)1(1)=0\left| \begin{matrix} 1 & 1 \\\ 1 & 1 \\\ \end{matrix} \right|=1\left( 1 \right)-1\left( 1 \right)=0
Cofactor of 3 = 11 12 =(1(2)1(1))=3-\left| \begin{matrix} 1 & 1 \\\ 1 & -2 \\\ \end{matrix} \right|=-\left( 1\left( -2 \right)-1\left( 1 \right) \right)=3
Cofactor of 1 = 11 03 =1(3)1(0)=3\left| \begin{matrix} 1 & 1 \\\ 0 & 3 \\\ \end{matrix} \right|=1\left( 3 \right)-1\left( 0 \right)=3
Cofactor of -2 = 11 13 =(1(3)1(1))=2-\left| \begin{matrix} 1 & 1 \\\ 1 & 3 \\\ \end{matrix} \right|=-\left( 1\left( 3 \right)-1\left( 1 \right) \right)=-2
Cofactor of 1 = 11 10 =1(0)1(1)=1\left| \begin{matrix} 1 & 1 \\\ 1 & 0 \\\ \end{matrix} \right|=1\left( 0 \right)-1\left( 1 \right)=-1
So, we get that cofactor matrix as
[622 303 321 ]\left[ \begin{matrix} 6 & 2 & -2 \\\ -3 & 0 & 3 \\\ 3 & -2 & -1 \\\ \end{matrix} \right]
Now, we need to find AdjAAdjA, by taking the transpose of cofactor matrix.
AdjA=[633 202 231 ]AdjA=\left[ \begin{matrix} 6 & -3 & 3 \\\ 2 & 0 & -2 \\\ -2 & 3 & -1 \\\ \end{matrix} \right]
Now, let us consider the formula, A1=1AAdjA{{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA
By using the above formula, we get
A1=16[633 202 231 ]{{A}^{-1}}=\dfrac{1}{6}\left[ \begin{matrix} 6 & -3 & 3 \\\ 2 & 0 & -2 \\\ -2 & 3 & -1 \\\ \end{matrix} \right]
Let us consider the formula,X=A1BX={{A}^{-1}}B
By using the above formula, we get
X=16[633 202 231 ][6000 11000 0 ]  X=16[6(6000)3(11000)+3(0) 2(6000)+0(11000)2(0) 2(6000)+3(11000)1(0) ]  X=16[3600033000+0 12000+00 12000+330000 ]  X=16[3000 12000 21000 ]  X=[30006 120006 210006 ]  X=[500 2000 3500 ]  \begin{aligned} & X=\dfrac{1}{6}\left[ \begin{matrix} 6 & -3 & 3 \\\ 2 & 0 & -2 \\\ -2 & 3 & -1 \\\ \end{matrix} \right]\left[ \begin{matrix} 6000 \\\ 11000 \\\ 0 \\\ \end{matrix} \right] \\\ & \\\ & X=\dfrac{1}{6}\left[ \begin{matrix} 6\left( 6000 \right)-3\left( 11000 \right)+3\left( 0 \right) \\\ 2\left( 6000 \right)+0\left( 11000 \right)-2\left( 0 \right) \\\ -2\left( 6000 \right)+3\left( 11000 \right)-1\left( 0 \right) \\\ \end{matrix} \right] \\\ & \\\ & X=\dfrac{1}{6}\left[ \begin{matrix} 36000-33000+0 \\\ 12000+0-0 \\\ -12000+33000-0 \\\ \end{matrix} \right] \\\ & \\\ & X=\dfrac{1}{6}\left[ \begin{matrix} 3000 \\\ 12000 \\\ 21000 \\\ \end{matrix} \right] \\\ & \\\ & X=\left[ \begin{matrix} \dfrac{3000}{6} \\\ \dfrac{12000}{6} \\\ \dfrac{21000}{6} \\\ \end{matrix} \right] \\\ & \\\ & X=\left[ \begin{matrix} 500 \\\ 2000 \\\ 3500 \\\ \end{matrix} \right] \\\ & \\\ \end{aligned}
Therefore, we get x=500x=500, y=2000y=2000 and z=3500z=3500.

Hence, the values of Honesty, Regularity and Hard work are 500, 2000 and 3500 respectively.
Apart from the Honesty, Regularity and Hard work, Punctuality is one more value which the school must include for awards.

Note: The possible mistakes that can done in this type of questions is while calculating the cofactor matrix, one might forget to multiply the determinant of aij{{a}_{ij}}with negative sign if i+ji+j is an odd number. After solving the problem one can also substitute the obtained values of x, y and z in the equations for verifying the answer.
Substituting in equation (1),
x+y+z=6000 500+2000+3500=6000 6000=6000 \begin{aligned} & \Rightarrow x+y+z=6000 \\\ & \Rightarrow 500+2000+3500=6000 \\\ & \Rightarrow 6000=6000 \\\ \end{aligned}
Substituting in equation (2),
x+3z=11000 500+3(3500)=11000 500+10500=11000 11000=11000 \begin{aligned} & \Rightarrow x+3z=11000 \\\ & \Rightarrow 500+3\left( 3500 \right)=11000 \\\ & \Rightarrow 500+10500=11000 \\\ & \Rightarrow 11000=11000 \\\ \end{aligned}
Substituting in equation (3),
x2y+z=0 5002(2000)+3500=0 5004000+3500=0 0=0 \begin{aligned} & \Rightarrow x-2y+z=0 \\\ & \Rightarrow 500-2\left( 2000 \right)+3500=0 \\\ & \Rightarrow 500-4000+3500=0 \\\ & \Rightarrow 0=0 \\\ \end{aligned}
So, they satisfy the equation given the conditions, so, the obtained answer is correct.