Solveeit Logo

Question

Physics Question on Gravitational Potential Energy

A satellite revolves around the earth of radius RR in a circular orbit of radius 3R.3R. The percentage increase in energy required to lift it to an orbit of radius 5R5R is

A

10%

B

20%

C

30%

D

40%

Answer

40%

Explanation

Solution

Gravitational potential energy of a body at a point is defined as the amount of work done in bringing the given body from infinity to that point against gravitational force
i.e. Gravitational potential energy = Gravitational potential ×\times mass of the body
Given, R1=3R,R2=5RR_{1}=3 R, R_{2}=5 R
In the first condition,
E1=GMmR1E_{1} =-\frac{G M m}{R_{1}}
E1=GMm3RE_{1} =-\frac{G M m}{3 R} ...(i)
In the second condition,
E2=GMmR2E_{2}=-\frac{G M m}{R_{2}}
E2=GMm5RE_{2}=-\frac{G M m}{5 R} ...(ii)
Change in energy required to lift it,
ΔE=E2E1\Delta E=E_{2}-E_{1}
ΔE=GMm5R+GMm3R\Rightarrow \Delta E=-\frac{G M m}{5 R}+\frac{G M m}{3 R}
ΔE=215GMmR\Rightarrow \Delta E=\frac{2}{15} \frac{G M m}{R} ...(iii)
On dividing E (ii) by E (i), we get
ΔEE1=215×31=25=0.4\frac{\Delta E}{E_{1}} =\frac{2}{15} \times \frac{3}{1}=\frac{2}{5}=0.4
ΔEE×100%=0.4×100=40%\frac{\Delta E}{E} \times 100 \% =0.4 \times 100=40 \%