Solveeit Logo

Question

Physics Question on Energy of an orbiting satellite

A satellite orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth’s gravitational influence? Mass of the satellite = 200 kg; mass of the earth = 6.0×1024 kg; radius of the earth = 6.4 × 106 m; G = 6.67 × 10-11 N m2 kg-2 .

Answer

Mass of the Earth, MM = 6.0×1024kg6.0\times 10^24\,kg
Mass of the satellite, mm = 200  kg200 \; kg
Radius of the Earth, ReR_e = 6.4×106  m6.4\times 10^6\;m
Universal gravitational constant, GG = 6.67×1011Nm2kg26.67 × 10^{–11}\, Nm^2kg^{–2}
Height of the satellite, hh =400  km400\;km = 4×105  m4\times 10^5\;m = 0.4×106  m0.4\times 10^6\;m
Total energy of the satellite at height hh = 12mv2+(GMemRe+h)\frac{1}{2}mv^2 + \bigg(\frac{-GM_e m }{ R_e +h}\bigg)

Orbital velocity of the satellite, vv =GMeRe+h\sqrt\frac{GM_e }{R_e +h}

Total energy of height, hh = 12m(GMeRe+h)GMemRe+h\frac{1}{2} m \bigg(\frac{GM_e }{ R_e +h}\bigg) - \frac{GM_e m }{ R_e +h} = 12(GMemRe+h)-\frac{1}{2} \bigg(\frac{GM_e m }{ R_e +h}\bigg)

The negative sign indicates that the satellite is bound to the Earth. This is called bound energy of the satellite.

Energy required to send the satellite out of its orbit = – (Bound energy)

= 12GMem(Re+h)\frac{1}{2} \frac{GM_e m }{ (R_e +h)}

= 12×6.67×1011×6.0×1024×200(6.4×106+0.4×106)\frac{1}{2} \times \frac{6.67 \times 10^{-11} \times 6.0 \times 10^{24} \times 200 }{ (6.4 \times 10^6 + 0.4 \times 10^6)}

= 12×6.67×6×2×106.8×106=5.9×109J\frac{1}{2} \times \frac{6.67 \times 6 \times 2 \times 10 }{ 6.8 \times 10^6} = 5.9 \times 10^9 J