Solveeit Logo

Question

Question: A satellite of mass m is revolving around earth $(M, R)$ in elliptical orbit with minimum and maximu...

A satellite of mass m is revolving around earth (M,R)(M, R) in elliptical orbit with minimum and maximum distance 2R2R and 4R4R respectively from centre of earth

List-IList-II
P. Maximum speed of satellite1. GMm6R\frac{-GMm}{6R}
Q. Minimum speed of satellite2. GM3R\sqrt{\frac{GM}{3R}}
R. Total energy of satellite3. 2GM3R\sqrt{\frac{2GM}{3R}}
S. Time period of satellite4. 6π3R3GM6\pi \sqrt{\frac{3R^3}{GM}}
                        | 5. $\sqrt{\frac{GM}{6R}}$   
A

P→ 3; Q→ 5; R → 1; S→ 4

B

P→ 3; Q→ 2; R→ 4; S→ 1

C

P→ 4; Q→ 5; R → 1; S→ 4

D

P→ 4; Q→ 2; R→ 4; S→ 5

Answer

P→ 3; Q→ 5; R → 1; S→ 4

Explanation

Solution

  1. The semi-major axis a=rmin+rmax2=2R+4R2=3Ra = \frac{r_{min} + r_{max}}{2} = \frac{2R + 4R}{2} = 3R.

  2. Total energy E=GMm2a=GMm6RE = -\frac{GMm}{2a} = -\frac{GMm}{6R}. (R→1)

  3. Maximum speed vmaxv_{max} at rmin=2Rr_{min}=2R: vmax2=GM(2rmin1a)=GM(22R13R)=2GM3Rv_{max}^2 = GM\left(\frac{2}{r_{min}} - \frac{1}{a}\right) = GM\left(\frac{2}{2R} - \frac{1}{3R}\right) = \frac{2GM}{3R}. vmax=2GM3Rv_{max} = \sqrt{\frac{2GM}{3R}}. (P→3)

  4. Minimum speed vminv_{min} at rmax=4Rr_{max}=4R: vmin2=GM(2rmax1a)=GM(24R13R)=GM6Rv_{min}^2 = GM\left(\frac{2}{r_{max}} - \frac{1}{a}\right) = GM\left(\frac{2}{4R} - \frac{1}{3R}\right) = \frac{GM}{6R}. vmin=GM6Rv_{min} = \sqrt{\frac{GM}{6R}}. (Q→5)

  5. Time period T=2πa3GM=2π(3R)3GM=2π27R3GM=6π3R3GMT = 2\pi\sqrt{\frac{a^3}{GM}} = 2\pi\sqrt{\frac{(3R)^3}{GM}} = 2\pi\sqrt{\frac{27R^3}{GM}} = 6\pi\sqrt{\frac{3R^3}{GM}}. (S→4)

Therefore, the correct matching is P→3, Q→5, R→1, S→4.