Solveeit Logo

Question

Question: A satellite of mass $\frac{M}{2}$ is revolving around earth in a circular orbit at a height of $\fra...

A satellite of mass M2\frac{M}{2} is revolving around earth in a circular orbit at a height of R3\frac{R}{3} from earth surface. The angular momentum of the satellite is MGMRxM\sqrt{\frac{GMR}{x}}. The value of xx is _______, where MM and RR are the mass and radius of earth, respectively. (G is the gravitational constant)

Answer

3

Explanation

Solution

Solution Explanation:

  1. Orbital radius:
      r=R+R3=4R3r = R + \frac{R}{3} = \frac{4R}{3}.

  2. Orbital speed (using v=GMrv = \sqrt{\frac{GM}{r}}):
      v=GM4R3v = \sqrt{\frac{GM}{\frac{4R}{3}}}.

  3. Angular momentum of the satellite (mass m=M2m = \frac{M}{2}):
      L=mrv=M2×4R3×GM4R3=M2×4R3×3GM4R=M2×4R3×3GM2R=M2×233GMR=MGMR3L = mrv = \frac{M}{2} \times \frac{4R}{3} \times \sqrt{\frac{GM}{\frac{4R}{3}}} = \frac{M}{2} \times \frac{4R}{3} \times \sqrt{\frac{3GM}{4R}} = \frac{M}{2} \times \frac{4R}{3} \times \frac{\sqrt{3GM}}{2\sqrt{R}} = \frac{M}{2} \times \frac{2}{3} \sqrt{3GMR} = M\sqrt{\frac{GM R}{3}}.

  4. Given expression:
      L=MGMRxL = M\sqrt{\frac{GM R}{x}}.
      Equate:
      MGMRx=MGMR3M\sqrt{\frac{GM R}{x}} = M\sqrt{\frac{GM R}{3}}
      Thus, x=3x = 3.