Solveeit Logo

Question

Question: A satellite is to be placed in equatorial geostationary orbit around earth for communication. The he...

A satellite is to be placed in equatorial geostationary orbit around earth for communication. The height of such a satellite is.

[ME=6×1024kg,RE=6400km,T=24hGM_{E} = 6 \times 10^{24}kg,R_{E} = 6400km,T = 24hG

=6.67×1011Nm2kg2= 6.67 \times 10^{- 11}Nm^{2}kg^{- 2}]

A

3.57×1053.57 \times 10^{5}m

B

3.57×1063.57 \times 10^{6}m

C

3.57×1073.57 \times 10^{7}m

D

3.57×1083.57 \times 10^{8} m

Answer

3.57×1073.57 \times 10^{7}m

Explanation

Solution

Time period of satellite.

T=2π(RE+h)GME(RE+h)=2π(RE+h)3/2GMET = \frac{2\pi(R_{E} + h)}{\sqrt{\frac{GM_{E}}{(R_{E} + h)}}} = \frac{2\pi(R_{E} + h)^{3/2}}{\sqrt{GM_{E}}}

Squaring both sides, we get

T2=4π(RE+h)3GMET^{2} = \frac{4\pi(R_{E} + h)^{3}}{GM_{E}}

(RE+h)3=GMET24π2(R_{E} + h)^{3} = \frac{GM_{E}T^{2}}{4\pi^{2}}

(RE+h)=(GMET24π2)1/3(R_{E} + h) = \left( \frac{GM_{E}T^{2}}{4\pi^{2}} \right)^{1/3}

Or h=(GMET24π2)1/3REh = \left( \frac{GM_{E}T^{2}}{4\pi^{2}} \right)^{1/3} - R_{E}

Here, ME=6×1024kgM_{E} = 6 \times 10^{24}kg

RE=6400m=6400×103m=6.4×106mR_{E} = 6400m = 6400 \times 10^{3}m = 6.4 \times 10^{6}m

T=24h=24×60×60s=86400sT = 24h = 24 \times 60 \times 60s = 86400s

G=6.67×1011Nm2kg2G = 6.67 \times 10^{- 11}Nm^{2}kg^{- 2}

On substituting the given values, we get

h=(6.67×1011×6×1024×(86400)24×(3.14)2)1/36.4×106=4.21×1076.4×106=3.57×107mh = \left( \frac{6.67 \times 10^{- 11} \times 6 \times 10^{24} \times (86400)^{2}}{4 \times (3.14)^{2}} \right)^{1/3} - 6.4 \times 10^{6} = 4.21 \times 10^{7} - 6.4 \times 10^{6} = 3.57 \times 10^{7}m