Solveeit Logo

Question

Physics Question on Gravitation

A satellite is moving with a constant speed vv in a circular orbit about the earth. An object of mass 'mm' is ejected from the satellite such that it just escapes from the gravitational pull of the earth. At the time of its ejection, the kinetic energy of the object is :

A

32mv2\frac{3}{2} m v^2

B

mv2 m v^2

C

2mv22 m v^2

D

12mv2 \frac{1}{2}m v^2

Answer

mv2 m v^2

Explanation

Solution

At height rr from center of earth. orbital velocity
=GMr =\sqrt{\frac{ GM }{ r }}
\therefore By energy conservation
KEKE of m+(GMmr)=0+0'm ^{\prime}+\left(-\frac{ GMm }{ r }\right)=0+0
(At infinity, PE=KE=0PE = KE =0 )
m=GMmr=(GMr)2m=mv2 ' m^{\prime}=\frac{G M m}{r}=\left(\sqrt{\frac{G M}{r}}\right)^{2} m=m v^{2}