Solveeit Logo

Question

Question: A satellite is in sufficiently low obit so that it encounter air drag and if orbit changes from r to...

A satellite is in sufficiently low obit so that it encounter air drag and if orbit changes from r to r - Dr. Find the change in orbital velocity and change in PE.

A

Δr2GMr3,GMmΔrr2\frac{\Delta r}{2}\sqrt{\frac{GM}{r^{3}}},\frac{GMm\Delta r}{r^{2}}

B

Δr2GMr2,GMmr\frac{\Delta r}{2}\sqrt{\frac{GM}{r^{2}}},\frac{GMm}{r}

C

Δr2GMr3,GMmΔr2r2\frac{\Delta r}{2}\sqrt{\frac{GM}{r^{3}}},\frac{GMm\Delta r}{2r^{2}}

D

None

Answer

Δr2GMr3,GMmΔrr2\frac{\Delta r}{2}\sqrt{\frac{GM}{r^{3}}},\frac{GMm\Delta r}{r^{2}}

Explanation

Solution

v0GMr\sqrt{\frac{GM}{r}} ; v0' = GMrΔr\sqrt{\frac{GM}{r - \Delta r}}

= GMr(1Δrr)1/2=GMr(1+Δr2r)\sqrt{\frac{GM}{r}}\left( 1 - \frac{\Delta r}{r} \right)^{- 1/2} = \sqrt{\frac{GM}{r}}\left( 1 + \frac{\Delta r}{2r} \right)∆v = v0' – v0 = GMr\sqrt{\frac{GM}{r}}

∆U = -2∆KE = - (12m)\left( \frac{1}{2}m \right) [v0'2 - v02]

= m[GMrΔrGMr]=GMmr[Δrr]=GMmΔrr2\left\lbrack \frac{GM}{r - \Delta r} - \frac{GM}{r} \right\rbrack = \frac{GMm}{r}\left\lbrack \frac{\Delta r}{r} \right\rbrack = \frac{GMm\Delta r}{r^{2}}