Solveeit Logo

Question

Question: A sample of \[{\text{KCl}}{{\text{O}}_3}\] on decomposition yielded 448 mL of oxygen gas at NTP. C...

A sample of KClO3{\text{KCl}}{{\text{O}}_3} on decomposition yielded 448 mL of oxygen gas at NTP.
Calculate (i){\text{(i)}} weight of oxygen produced (ii){\text{(ii)}} weight of KClO3{\text{KCl}}{{\text{O}}_3} originally taken (iii){\text{(iii)}} weight of KCl{\text{KCl}} produced.
2KClO3Δ 2KCl + 3O2{\text{2KCl}}{{\text{O}}_3}\xrightarrow{\Delta }{\text{ 2KCl + 3}}{{\text{O}}_2}
(K=39,Cl=35.5, and O=16)(K = 39,Cl = 35.5,{\text{ and }}O = 16)

Explanation

Solution

For this question we must know the conversion of volume into number of moles on NTP that is normal condition of temperature and pressure. Molecular mass of all the elements are given to us, from that we can calculate their mass. Every product is produced according to stoichiometric or in simpler terms number of moles of reaction.
Formula used: number of moles at NTP=V(ml)22400ml{\text{number of moles at NTP}} = \dfrac{{V({\text{ml}})}}{{22400{\text{ml}}}}
number of moles n = mass of substance in grammolar mass{\text{number of moles }}n{\text{ = }}\dfrac{{{\text{mass of substance in gram}}}}{{{\text{molar mass}}}}

Complete step by step solution:
Whenever we want to find the product and reactant, then we will always proceed in stoichiometric ratio. As 2 moles of KClO3{\text{KCl}}{{\text{O}}_3} forms 2 moles of KCl{\text{KCl}} and 3 moles of O2{{\text{O}}_2}so 1 mole of KClO3{\text{KCl}}{{\text{O}}_3} will form 1 mole of KCl{\text{KCl}} and 32\dfrac{3}{2} moles of O2{{\text{O}}_2}.
Volume of O2{{\text{O}}_2} is given so let us calculate the number of moles of O2{{\text{O}}_2}:
number of moles of O2 =448ml22400ml=0.02 moles{\text{number of moles of }}{{\text{O}}_2}{\text{ }} = \dfrac{{{\text{448ml}}}}{{22400{\text{ml}}}} = 0.02{\text{ moles}}
Molar mass of O2{{\text{O}}_{\text{2}}} is 16 + 16 = 32 gmol1{\text{16 + 16 = 32 gmo}}{{\text{l}}^{ - 1}}
Now we will calculate the mass of O2{{\text{O}}_{\text{2}}}
0.02 = mass in (g)32 gmol1\Rightarrow {\text{0}}{\text{.02 = }}\dfrac{{{\text{mass in (g)}}}}{{{\text{32 gmo}}{{\text{l}}^{ - 1}}}}
mass of O2=0.02×32=0.64g{\text{mass of }}{{\text{O}}_2} = 0.02 \times 32 = 0.64{\text{g}}
Molar mass of KClO3{\text{KCl}}{{\text{O}}_3} is 39 + 35.5 + 3×16 = 122.5 gmol1{\text{39 + 35}}{\text{.5 + 3}} \times {\text{16 = 122}}{\text{.5 gmo}}{{\text{l}}^{ - 1}}
Since according to the reaction 2 moles of KClO3{\text{KCl}}{{\text{O}}_3} forms 3 mole of O2{{\text{O}}_{\text{2}}}. So mass of KClO3{\text{KCl}}{{\text{O}}_3} to produce 3 moles of O2{{\text{O}}_{\text{2}}} is:
mass of KClO3=2×122.5=245g{\text{mass of KCl}}{{\text{O}}_3} = 2 \times 122.5 = 245{\text{g}}
But we have 0.020.02moles of oxygen produce.
The required mass of KClO3{\text{KCl}}{{\text{O}}_3} for 3 moles of oxygen is 245 grams.
For 0.020.02 moles of oxygen mass of KClO3{\text{KCl}}{{\text{O}}_3} will be 2453×0.02=1.63 grams\dfrac{{245}}{3} \times 0.02 = 1.63{\text{ grams}}
According to the law of conservation of mass, mass is always conserved, that is mass of reactant and product will be the same. Hence,
mass of KClO3= mass of KCl + mass of O2{\text{mass of KCl}}{{\text{O}}_3} = {\text{ mass of KCl + mass of }}{{\text{O}}_2}
Rearranging we will get,
mass of KCl = mass of KClO3 - mass of O2{\text{mass of KCl = mass of KCl}}{{\text{O}}_3}{\text{ - mass of }}{{\text{O}}_2}
mass of KCl =1.630.64=0.993g\Rightarrow {\text{mass of KCl }} = 1.63 - 0.64 = 0.993{\text{g}}

Note:
Stoichiometry is the minimum amount of reacting molecules that is required to run the reaction. For example in the given reaction 2 moles are required to produce the respective product. They are not the number of moles, because they do not tell us about the amount or reactant present. Instead stoichiometry tells about the minimum number of moles required.