Solveeit Logo

Question

Question: A sample of radioactive material decays simultaneously by two processes A and B with half lives \(\f...

A sample of radioactive material decays simultaneously by two processes A and B with half lives 12\frac{1}{2} and 14\frac{1}{4} hr respectively. For first half hr it decays with the process A, next one hr with the process B and for further half an hour with both A and B. If originally there were N0 nuclei, find the number of nuclei after 2 hr of such decay.

A

N0(2)8\frac{N_{0}}{(2)^{8}}

B

N0(2)4\frac{N_{0}}{(2)^{4}}

C

N0(2)6\frac{N_{0}}{(2)^{6}}

D

N0(2)5\frac{N_{0}}{(2)^{5}}

Answer

N0(2)8\frac{N_{0}}{(2)^{8}}

Explanation

Solution

After first half hrs N = N0 . 12\frac { 1 } { 2 }

for t = 12\frac { 1 } { 2 }hr to t = 1 12\frac { 1 } { 2 } hrs

N = [N012]\left[ \mathrm { N } _ { 0 } \cdot \frac { 1 } { 2 } \right] [12]4\left[ \frac { 1 } { 2 } \right] ^ { 4 } = N0 [12]5\left[ \frac { 1 } { 2 } \right] ^ { 5 }

For t = 112\frac { 1 } { 2 } hrs to t = 2 hrs. [for both A and B

1t1/2=11/2+11/4\frac { 1 } { t _ { 1 / 2 } } = \frac { 1 } { 1 / 2 } + \frac { 1 } { 1 / 4 }= 2 + 4 = 6 Ž t1/2 = 1/6 hrs.]

N = [N0(12)5][12]3=N0[12]8\left[ \mathrm { N } _ { 0 } \left( \frac { 1 } { 2 } \right) ^ { 5 } \right] \left[ \frac { 1 } { 2 } \right] ^ { 3 } = \mathrm { N } _ { 0 } \left[ \frac { 1 } { 2 } \right] ^ { 8 }