Solveeit Logo

Question

Question: A sample of hydrogen atoms is irradiated with light with wavelength 86.8 nm, and electrons are obser...

A sample of hydrogen atoms is irradiated with light with wavelength 86.8 nm, and electrons are observed leaving the gas. Each hydrogen atoms were initially in its ground level.

A

The maximum kinetic energy of photoelectrons is 0.68 eV approx.

B

The de Broglie wavelength of photoelectrons is greater than wavelength of incident photons.

C

The de Broglie wavelength of photoelectrons is greater than that of bound electrons in H atom

D

The magnitude of momentum of incident photons is more than momentum of ejected photoelectrons.

Answer

The maximum kinetic energy of photoelectrons is 0.68 eV approx., The de Broglie wavelength of photoelectrons is greater than that of bound electrons in H atom

Explanation

Solution

Here's the step-by-step solution:

  1. Energy of the incident photon:
    The wavelength of the incident light is λ=86.8 nm\lambda = 86.8 \text{ nm}.
    The energy of the photon is Ephoton=hcλE_{photon} = \frac{hc}{\lambda}.
    Using hc=1240 eV nmhc = 1240 \text{ eV nm}, we get:
    Ephoton=1240 eV nm86.8 nm14.286 eVE_{photon} = \frac{1240 \text{ eV nm}}{86.8 \text{ nm}} \approx 14.286 \text{ eV}.

  2. Ionization energy of hydrogen atom:
    The hydrogen atom is initially in its ground state (n=1n=1). The energy of the ground state is E1=13.6 eVE_1 = -13.6 \text{ eV}.
    The energy required to remove an electron from the ground state (ionization energy) is Φ=E1=13.6 eV\Phi = |E_1| = 13.6 \text{ eV}.

  3. Maximum kinetic energy of photoelectrons:
    According to the photoelectric effect equation, the maximum kinetic energy of the ejected electron is KEmax=EphotonΦKE_{max} = E_{photon} - \Phi.
    KEmax=14.286 eV13.6 eV=0.686 eVKE_{max} = 14.286 \text{ eV} - 13.6 \text{ eV} = 0.686 \text{ eV}.

  4. Evaluate statement 1: "The maximum kinetic energy of photoelectrons is 0.68 eV approx."
    Our calculated value 0.686 eV0.686 \text{ eV} is approximately 0.68 eV0.68 \text{ eV}.
    Statement 1 is correct.

  5. Momentum of incident photon:
    The momentum of the incident photon is pphoton=hλp_{photon} = \frac{h}{\lambda}.
    pphoton=6.626×1034 J s86.8×109 m7.634×1027 kg m/sp_{photon} = \frac{6.626 \times 10^{-34} \text{ J s}}{86.8 \times 10^{-9} \text{ m}} \approx 7.634 \times 10^{-27} \text{ kg m/s}.

  6. Momentum and de Broglie wavelength of ejected photoelectrons:
    The maximum kinetic energy is KEmax=0.686 eVKE_{max} = 0.686 \text{ eV}.
    Convert KEmaxKE_{max} to Joules: KEmax=0.686 eV×1.602×1019 J/eV1.099×1019 JKE_{max} = 0.686 \text{ eV} \times 1.602 \times 10^{-19} \text{ J/eV} \approx 1.099 \times 10^{-19} \text{ J}.
    The momentum of the photoelectron is pelectron=2meKEmaxp_{electron} = \sqrt{2 m_e KE_{max}}.
    Using me=9.109×1031 kgm_e = 9.109 \times 10^{-31} \text{ kg}:
    pelectron=2×9.109×1031 kg×1.099×1019 Jp_{electron} = \sqrt{2 \times 9.109 \times 10^{-31} \text{ kg} \times 1.099 \times 10^{-19} \text{ J}}
    pelectron=20.01×10504.473×1025 kg m/sp_{electron} = \sqrt{20.01 \times 10^{-50}} \approx 4.473 \times 10^{-25} \text{ kg m/s}.
    The de Broglie wavelength of the photoelectron is λelectron=hpelectron\lambda_{electron} = \frac{h}{p_{electron}}.
    λelectron=6.626×1034 J s4.473×1025 kg m/s1.481×109 m=1.481 nm\lambda_{electron} = \frac{6.626 \times 10^{-34} \text{ J s}}{4.473 \times 10^{-25} \text{ kg m/s}} \approx 1.481 \times 10^{-9} \text{ m} = 1.481 \text{ nm}.

  7. Evaluate statement 2: "The de Broglie wavelength of photoelectrons is greater than wavelength of incident photons."
    λelectron=1.481 nm\lambda_{electron} = 1.481 \text{ nm}, λphoton=86.8 nm\lambda_{photon} = 86.8 \text{ nm}.
    λelectron<λphoton\lambda_{electron} < \lambda_{photon}.
    Statement 2 is incorrect.

  8. Momentum and de Broglie wavelength of bound electron in ground state of H atom:
    In the Bohr model, the momentum of the electron in the ground state (n=1n=1) is related to the Bohr radius r1=a0=5.29×1011 mr_1 = a_0 = 5.29 \times 10^{-11} \text{ m} by the de Broglie condition 2πr1=1×λbound,12 \pi r_1 = 1 \times \lambda_{bound, 1}.
    λbound,1=2πr1=2π×5.29×1011 m33.24×1011 m=0.3324 nm\lambda_{bound, 1} = 2 \pi r_1 = 2 \pi \times 5.29 \times 10^{-11} \text{ m} \approx 33.24 \times 10^{-11} \text{ m} = 0.3324 \text{ nm}.
    The momentum is pbound,1=hλbound,1=6.626×1034 J s0.3324×109 m1.993×1024 kg m/sp_{bound, 1} = \frac{h}{\lambda_{bound, 1}} = \frac{6.626 \times 10^{-34} \text{ J s}}{0.3324 \times 10^{-9} \text{ m}} \approx 1.993 \times 10^{-24} \text{ kg m/s}.

  9. Evaluate statement 3: "The de Broglie wavelength of photoelectrons is greater than that of bound electrons in H atom"
    λelectron=1.481 nm\lambda_{electron} = 1.481 \text{ nm}, λbound,1=0.3324 nm\lambda_{bound, 1} = 0.3324 \text{ nm}.
    λelectron>λbound,1\lambda_{electron} > \lambda_{bound, 1}.
    Statement 3 is correct.

  10. Evaluate statement 4: "The magnitude of momentum of incident photons is more than momentum of ejected photoelectrons."
    pphoton=7.634×1027 kg m/sp_{photon} = 7.634 \times 10^{-27} \text{ kg m/s}.
    pelectron=4.473×1025 kg m/sp_{electron} = 4.473 \times 10^{-25} \text{ kg m/s}.
    pphoton<pelectronp_{photon} < p_{electron}.
    Statement 4 is incorrect.

The correct statements are the first and the third ones.