Solveeit Logo

Question

Question: A sample of excited single electron ions can emit maximum 10 different spectral lines when de-excite...

A sample of excited single electron ions can emit maximum 10 different spectral lines when de-excited to ground level. The maximum energy emitted during transition is 117.5 eV. Now, photons of minimum energy emitted during transition strikes on a metal having work function 1.254 eV emits photoelectrons. The de-Broglie wavelength of emitted photo electron (in Å) is:-

Answer

10 Å

Explanation

Solution

Step 1. Determine the Initial Level (n):

A hydrogen-like ion with a single electron produces a maximum number of spectral lines given by

N=n(n1)2N = \frac{n(n-1)}{2}

We are told N=10N = 10. Thus,

n(n1)2=10n(n1)=20.\frac{n(n-1)}{2} = 10 \quad \Rightarrow \quad n(n-1) = 20.

Trying n=5n = 5 gives 5×4=205 \times 4 = 20. So, the ion was excited to the n=5n=5 level.

Step 2. Find the Atomic Number (Z):

For a hydrogen-like ion, the energy of a level is

En=Z213.6 eVn2.E_n = -\frac{Z^2 \cdot 13.6 \text{ eV}}{n^2}.

The maximum energy photon is emitted in the transition from n=5n=5 to n=1n=1, so:

ΔE51=E1E5=Z213.612(Z213.625)=Z213.6(1125).\Delta E_{5\to1} = E_1 - E_5 = -\frac{Z^2\cdot 13.6}{1^2} - \left(-\frac{Z^2\cdot 13.6}{25}\right) = Z^2 \cdot 13.6\left(1-\frac{1}{25}\right).

Simplify:

ΔE51=Z213.62425=Z213.056 eV.\Delta E_{5\to1} = Z^2 \cdot 13.6 \cdot \frac{24}{25} = Z^2 \cdot 13.056 \text{ eV}.

Given ΔE51=117.5\Delta E_{5\to1} = 117.5 eV,

Z2=117.513.0569Z=3.Z^2 = \frac{117.5}{13.056} \approx 9 \quad \Rightarrow \quad Z = 3.

Step 3. Determine the Minimum Photon Energy:

Among the possible transitions from n=5n=5, the smallest energy difference is between adjacent levels, i.e., 545\to4.

Calculate:

E5=913.625=122.4254.896 eV,E_5 = -\frac{9\cdot 13.6}{25} = -\frac{122.4}{25} \approx -4.896 \text{ eV}, E4=913.616=122.4167.65 eV.E_4 = -\frac{9\cdot 13.6}{16} = -\frac{122.4}{16} \approx -7.65 \text{ eV}.

Thus,

ΔE54=E4E5=(7.65)(4.896)2.754 eV.\Delta E_{5\to4} = E_4 - E_5 = (-7.65)-(-4.896) \approx 2.754 \text{ eV}.

Step 4. Photoelectric Effect & Kinetic Energy of Photoelectrons:

When a photon of energy ΔE542.754\Delta E_{5\to4} \approx 2.754 eV strikes a metal with work function ϕ=1.254\phi = 1.254 eV, the kinetic energy KK of the emitted photoelectron is:

K=Photon Energyϕ=2.7541.254=1.5 eV.K = \text{Photon Energy} - \phi = 2.754 - 1.254 = 1.5 \text{ eV}.

Step 5. Calculate the de Broglie Wavelength:

The de Broglie wavelength is given by:

λ=h2mK.\lambda = \frac{h}{\sqrt{2mK}}.

For electrons, a useful formula (with energy KK in eV and wavelength λ\lambda in Å) is:

λ(A˚)12.27K (eV).\lambda (\text{\AA}) \approx \frac{12.27}{\sqrt{K \text{ (eV)}}}.

Substitute K=1.5K = 1.5 eV:

λ12.271.512.271.22510 A˚.\lambda \approx \frac{12.27}{\sqrt{1.5}} \approx \frac{12.27}{1.225} \approx 10 \text{ \AA}.

Final Answer: The de Broglie wavelength of the emitted photoelectrons is approximately 10 Å.