Solveeit Logo

Question

Question: A rope of mass M is hanged from two support 'A' & 'B' as shown in figure. Maximum and minimum tensio...

A rope of mass M is hanged from two support 'A' & 'B' as shown in figure. Maximum and minimum tension in the rope is –

A

Mgcosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) } , Mgcosθ1sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

B

Mg, Mg cosq1

C

Mgcosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) } , Mgcosθ1cosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

D

Mgcosθ2cos(θ2θ1)\frac { M g \cos \theta _ { 2 } } { \cos \left( \theta _ { 2 } - \theta _ { 1 } \right) } , Mgcosθ1sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

Answer

Mgcosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) } , Mgcosθ1cosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

Explanation

Solution

Free body diagram of rope AB -

TA cos q1 = TB cos q2

TA sin q1 + TB sin q2 = Mg

\ TA = Mgcosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

TB = Mgcosθ1sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

Free body diagram of point AC

Horizontal equilibrium :

TA cos q1 = TC

\ TC = Mgcosθ1cosθ2sin(θ1+θ2)\frac { M g \cos \theta _ { 1 } \cos \theta _ { 2 } } { \sin \left( \theta _ { 1 } + \theta _ { 2 } \right) }

Tension will be maximum at A and minimum at C.