Solveeit Logo

Question

Question: A root of the equation \(17{{x}^{2}}+17x\tan \left( 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-\dfra...

A root of the equation 17x2+17xtan(2tan1(15)π4)10=017{{x}^{2}}+17x\tan \left( 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-\dfrac{\pi }{4} \right)-10=0 is
(a) 1017\dfrac{-10}{17}
(b) -1
(c) 717\dfrac{7}{17}
(d) 1

Explanation

Solution

Hint: We will apply the inverse trigonometric formula which is given by 2tan1θ=tan1(2θ1θ2)2{{\tan }^{-1}}\theta ={{\tan }^{-1}}\left( \dfrac{2\theta }{1-{{\theta }^{2}}} \right) where θ\theta is the angle that lies between -1 and 1. We will use this formula to solve the given equation.

Complete step-by-step answer:
Considering the equation given by 17x2+17xtan(2tan1(15)π4)10=0...(i)17{{x}^{2}}+17x\tan \left( 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-\dfrac{\pi }{4} \right)-10=0...(i)
In this expression we can clearly see an expression given by 2tan1(15)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right). To solve this expression we will use the formula of inverse trigonometric formula which is given by 2tan1θ=tan1(2θ1θ2)2{{\tan }^{-1}}\theta ={{\tan }^{-1}}\left( \dfrac{2\theta }{1-{{\theta }^{2}}} \right) where θ\theta lies between -1 and 1. Therefore, we have
2tan1(15)=tan1(2(15)1(15)2)...(ii)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)...(ii)
Since, we know that the square of 15=125\dfrac{1}{5}=\dfrac{1}{25} and 2×15=252\times \dfrac{1}{5}=\dfrac{2}{5} therefore, we have
2tan1(15)=tan1(251125)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right)
By taking lcm in the expression 11251-\dfrac{1}{25} we have that the lcm(1,25) is 25. Thus, we get 1125=251251-\dfrac{1}{25}=\dfrac{25-1}{25} . Now, we will substitute this value in equation (ii). Thus, we have
2tan1(15)=tan1(2525125) 2tan1(15)=tan1(252425) \begin{aligned} & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right) \\\ & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{24}{25}} \right) \\\ \end{aligned}
At this step we will use the formula given by abcd=ab×dc\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}. Therefore, we have
2tan1(15)=tan1(25×2524) 2tan1(15)=tan1(512) \begin{aligned} & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{2}{5}\times \dfrac{25}{24} \right) \\\ & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right) \\\ \end{aligned}
Now, we will substitute this value in equation (i). Therefore, we have
17x2+17xtan(2tan1(15)π4)10=0 17x2+17xtan(tan1(512)π4)10=0...(iii) \begin{aligned} & 17{{x}^{2}}+17x\tan \left( 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-\dfrac{\pi }{4} \right)-10=0 \\\ & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right)-\dfrac{\pi }{4} \right)-10=0...(iii) \\\ \end{aligned}
Now, as we know that tan1(π4)=1{{\tan }^{-1}}\left( \dfrac{\pi }{4} \right)=1. Thus, if we use inverse tan operation on both the sides of this expression we will have tan1(tan(π4))=tan1(1){{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4} \right) \right)={{\tan }^{-1}}\left( 1 \right). Now, we will apply the formula given by tan1(tanθ)=θ{{\tan }^{-1}}\left( \tan \theta \right)=\theta . Thus, we have that π4=tan1(1)\dfrac{\pi }{4}={{\tan }^{-1}}\left( 1 \right) . Now, we will substitute the value of θ\theta in equation (iii) where θ=π4\theta =\dfrac{\pi }{4}. Therefore, we have
17x2+17xtan(tan1(512)π4)10=0 17x2+17xtan(tan1(512)tan1(1))10=0 \begin{aligned} & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right)-\dfrac{\pi }{4} \right)-10=0 \\\ & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{5}{12} \right)-{{\tan }^{-1}}\left( 1 \right) \right)-10=0 \\\ \end{aligned}
Now, we will apply the formula given by tan1x±tan1y=tan1(x±y1xy){{\tan }^{-1}}x\pm {{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x\pm y}{1\mp xy} \right). Therefore, we have
17x2+17xtan(tan1(51211+(512)(1)))10=0 17x2+17xtan(tan1(5121212+512))10=0 17x2+17xtan(tan1(717))10=0 \begin{aligned} & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}-1}{1+\left( \dfrac{5}{12} \right)\left( 1 \right)} \right) \right)-10=0 \\\ & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{\dfrac{5-12}{12}}{\dfrac{12+5}{12}} \right) \right)-10=0 \\\ & 17{{x}^{2}}+17x\tan \left( {{\tan }^{-1}}\left( \dfrac{-7}{17} \right) \right)-10=0 \\\ \end{aligned}
Now, we will apply the formula given by tan(tan1(θ))=θ\tan \left( {{\tan }^{-1}}\left( \theta \right) \right)=\theta . Thus, we have
17x2+17x71710=0 17x27x10=0...(iv) \begin{aligned} & 17{{x}^{2}}+17x\dfrac{-7}{17}-10=0 \\\ & \Rightarrow 17{{x}^{2}}-7x-10=0...(iv) \\\ \end{aligned}
Clearly, x=0 does not satisfy the equation so we will substitute x=1 in equation (iv). Thus we have
17(1)27(1)10=17710 17710=1717 1717=0 \begin{aligned} & 17{{\left( 1 \right)}^{2}}-7\left( 1 \right)-10=17-7-10 \\\ & \Rightarrow 17-7-10=17-17 \\\ & \Rightarrow 17-17=0 \\\ \end{aligned}

Since, x=1 satisfies the equation (iv). Thus (x-1) is a factor of (iv). Now we will divide equation (iv) by the factor (x-1) as follows.
x1)17x27x10 ±17x217x +10x10 ±10x10 00 17x+10x-1\overset{17x+10}{\overline{\left){\begin{aligned} & 17{{x}^{2}}-7x-10 \\\ & \underline{\pm 17{{x}^{2}}\mp 17x} \\\ & +10x-10 \\\ & \underline{\pm 10x\mp 10} \\\ & \underline{00} \\\ \end{aligned}}\right.}}
Thus, we have that
17x27x10=(x1)(17x+10) (x1)(17x+10)=0 \begin{aligned} & 17{{x}^{2}}-7x-10=\left( x-1 \right)\left( 17x+10 \right) \\\ & \Rightarrow \left( x-1 \right)\left( 17x+10 \right)=0 \\\ \end{aligned}
Now, we have that x-1=0 or 17x+10=0. We will first consider x-1=0. Therefore we have the value of x=1. Now we will consider the value 17x+10=0. Thus we get 17x=-10 or x=1017x=\dfrac{-10}{17}.

Note: We could have found the roots of the equation 17x27x10=017{{x}^{2}}-7x-10=0 alternatively by square root formula. The formula is given by x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a} where x are roots of the of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0. We could have applied the formula 2tan1(θ)=tan1(2θ1θ2)2{{\tan }^{-1}}\left( \theta \right)={{\tan }^{-1}}\left( \dfrac{2\theta }{1-{{\theta }^{2}}} \right) into the equation 17x2+17xtan(2tan1(15)π4)10=017{{x}^{2}}+17x\tan \left( 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)-\dfrac{\pi }{4} \right)-10=0 directly. This resulted in minimum steps.