Solveeit Logo

Question

Physics Question on Friction

A rolling wheel of 1212 kg is on an inclined plane at position P and connected to a mass of 33 kg through a string of fixed length and pulley as shown in figure. Consider PR as friction free surface.
The velocity of centre of mass of the wheel when it reaches at the bottom Q of the inclined plane PQ will be 12xgh\frac{1}{2}\sqrt{ xgh} m/sm/s. The value of x is _________.

Answer

The value of x is 3\underline{3}

For rolling wheel [12gsinα3gsinα]×R=(2×12R2\+3R2)×(aR)[12g sinα – 3g sinα] × R = (2 × 12 R^2 \+ 3R2) × \bigg(\frac{a}{R}\bigg)

9  gsin  α27=α⇒\frac{9\;gsin\;α}{27}=α

a=g  sin  α3⇒a=\frac{g\;sin\;α}{3}

v=2×gsinα3×hsinα=23gh∴v=\sqrt{ 2×\frac{gsinα}{3}×\frac{h}{sinα}}= \sqrt{\frac{2}{3}gh}

=12×83gh\frac{1}{2} ×\sqrt{ \frac{8}{3}gh}

x=83=2.67∴x=\frac{8}{3}=2.67