Solveeit Logo

Question

Question: A rod of mass m and length L (= 50/3m) is hinged in plank of same mass m. The plank is kept at the c...

A rod of mass m and length L (= 50/3m) is hinged in plank of same mass m. The plank is kept at the corner of a smooth table and rod makes θ\theta with the vertical. The system is released from the θ\theta = 0°. Find the velocity (in m/s) of plank when the rod makes the θ\theta = 180° (g=10m/s²)

Answer

10

Explanation

Solution

Solution Explanation

  1. Conservation of Horizontal Momentum:
     Let the plank’s velocity be vv to the right and the rod’s angular velocity be ω\omega.
     At the instant θ=180\theta=180^\circ (rod vertical downward), the rod’s center of mass (located at L/2L/2 from the hinge) has a relative horizontal speed L2ω\frac{L}{2}\omega (to the left).
     Thus, the rod’s horizontal speed in the lab frame is vL2ωv - \frac{L}{2}\omega.
     Since total horizontal momentum begins at 0:
    mv+m(vL2ω)=02vL2ω=0  m\,v + m\Bigl(v - \frac{L}{2}\omega\Bigr) = 0 \quad\Longrightarrow\quad 2v -\frac{L}{2}\omega = 0    So,
    ω=4vL.  \omega = \frac{4v}{L}.  

  2. Conservation of Energy:
     Loss in gravitational potential energy of the rod’s center of mass as it falls a distance LL is mgLmgL.
     The final kinetic energy consists of three parts:
     - Plank’s translational KE: 12mv2\frac{1}{2}m v^2.
     - Rod’s translational KE (of its center of mass): 12m(vL2ω)2\frac{1}{2}m \Bigl(v - \frac{L}{2}\omega\Bigr)^2.
     - Rod’s rotational KE about its center of mass: 12Icmω2\frac{1}{2}I_{\text{cm}}\omega^2, with Icm=112mL2I_{\text{cm}}=\frac{1}{12}mL^2.
     At θ=180\theta=180^\circ the rod is vertical downward so  vL2ω=vL2(4vL)=v2v=v,  v - \frac{L}{2}\omega = v - \frac{L}{2}\left(\frac{4v}{L}\right) = v - 2v = -v,    and (v2v)2=v2(v-2v)^2 = v^2.

 Thus, the energy equation becomes:  mgL=12mv2+12mv2+12(112mL2)ω2.  mgL = \frac{1}{2}mv^2 + \frac{1}{2}mv^2 + \frac{1}{2}\left(\frac{1}{12}mL^2\right)\omega^2.    Substitute ω=4vL\omega = \frac{4v}{L}:  mgL=mv2+12(112mL2)(16v2L2)=mv2+812mv2=mv2+23mv2=53mv2.  mgL = m v^2 + \frac{1}{2}\left(\frac{1}{12}mL^2\right) \left(\frac{16 v^2}{L^2}\right)  = m v^2 + \frac{8}{12}m v^2  = m v^2 + \frac{2}{3}m v^2  = \frac{5}{3}m v^2.    Cancelling mm gives:  53v2=gLv2=3gL5.  \frac{5}{3}v^2 = gL \quad\Longrightarrow\quad v^2 = \frac{3gL}{5}.  

  1. Substitute Given Values:
    g=10m/s2g = 10\,\text{m/s}^2 and L=503mL = \frac{50}{3}\,\text{m}:  v2=3×10×5035=10×505=5005=100,  v^2 = \frac{3 \times 10 \times \frac{50}{3}}{5}  = \frac{10 \times 50}{5}  = \frac{500}{5} = 100,    so  v=100=10m/s.  v = \sqrt{100} = 10\,\text{m/s}.  

Answer:
The velocity of the plank when the rod makes θ=180\theta=180^\circ is 10 m/s.


Metadata:

  • Subject: Physics

  • Chapter: Mechanics

  • Topic: Conservation of Energy & Momentum (Rotational Motion)

  • Difficulty Level: Hard

  • Question Type: single_choice (if options provided) / integer (value answer)