Solveeit Logo

Question

Question: A rod of length L and mass M is acted on by two unequal forces F<sub>1</sub> and F<sub>2</sub> (\< F...

A rod of length L and mass M is acted on by two unequal forces F1 and F2 (< F1) as shown in the following figure.

The tension in the rod at a distance y from the end A is given by:

A

F1(1yL)+F2(yL)\left( 1 - \frac{y}{L} \right) + F_{2}\left( \frac{y}{L} \right)

B

F2(1yL)+F1(yL)F_{2}\left( 1 - \frac{y}{L} \right) + F_{1}\left( \frac{y}{L} \right)

C

(F1 – F2) yL\frac{y}{L}

D

None of these

Answer

F1(1yL)+F2(yL)\left( 1 - \frac{y}{L} \right) + F_{2}\left( \frac{y}{L} \right)

Explanation

Solution

a = F1F2m1+m2=F1F2M\frac{F_{1} - F_{2}}{m_{1} + m_{2}} = \frac{F_{1} - F_{2}}{M}

and

F1 – T = m­1a

or F1 – T = ML.y.(F1F2)M\frac{M}{L}.y.\frac{(F_{1} - F_{2})}{M}

or F1 – T = (F1 – F2) yL\frac{y}{L}

or T = F1(F1F2)yL\frac{(F_{1} - F_{2})y}{L}

or T = F1(Ly)L+F2yL\frac{F_{1}(L - y)}{L} + \frac{F_{2}y}{L}