Solveeit Logo

Question

Question: A rod of length $\ell$ and cross-sectional area A has a variable conductivity given by $K = \alpha +...

A rod of length \ell and cross-sectional area A has a variable conductivity given by K=α+βTK = \alpha + \beta T, where α,β\alpha, \beta are a positive constants and T is temperature (in Kelvin) of the isothermal surface. Two ends of the rod are maintained at temperatures T1T_1 and T2T_2 (T1>T2T_1 > T_2). Heat current flowing through the rod will be

A

A(T2T1)[β+α2(T2+T1)]\frac{A(T_2 - T_1)}{\ell} \left[\beta + \frac{\alpha}{2}(T_2 + T_1)\right]

B

A(T2T1)[βα2(T2+T1)]\frac{A(T_2 - T_1)}{\ell} \left[\beta - \frac{\alpha}{2}(T_2 + T_1)\right]

C

A(T2T1)[αβ2(T2+T1)]\frac{A(T_2 - T_1)}{\ell} \left[\alpha - \frac{\beta}{2}(T_2 + T_1)\right]

D

A(T2T1)[α+β2(T2+T1)]\frac{A(T_2 - T_1)}{\ell} \left[\alpha + \frac{\beta}{2}(T_2 + T_1)\right]

Answer

A(T2T1)[α+β2(T2+T1)]\frac{A(T_2-T_1)}{\ell} \left[\alpha + \frac{\beta}{2}(T_2+T_1)\right]

Explanation

Solution

For one‐dimensional steady state conduction, Fourier’s law gives

i=KAdTdxi = -KA\,\frac{dT}{dx},

where the conductivity is

K=α+βTK = \alpha + \beta T.

Since the system is in a steady state, ii is constant. Writing:

dTdx=iA(α+βT)\frac{dT}{dx} = -\frac{i}{A(\alpha+\beta T)},

we separate variables and integrate from x=0x=0 to x=x=\ell and T=T1T=T_1 to T=T2T=T_2:

0dx=AiT1T2(α+βT)dT\int_{0}^{\ell} dx = -\frac{A}{i} \int_{T_1}^{T_2} (\alpha + \beta T)\,dT.

This gives:

=Ai[α(T2T1)+β2(T22T12)]\ell = -\frac{A}{i} \left[ \alpha (T_2-T_1)+ \frac{\beta}{2}(T_2^2-T_1^2) \right].

Solving for ii:

i=A[α(T2T1)+β2(T22T12)]i = -\frac{A}{\ell}\left[ \alpha (T_2-T_1)+\frac{\beta}{2}(T_2^2-T_1^2) \right].

Now note that:

T22T12=(T2T1)(T2+T1)T_2^2-T_1^2 = (T_2-T_1)(T_2+T_1).

Thus,

i=A(T2T1)[α+β2(T2+T1)]i = -\frac{A}{\ell}(T_2-T_1) \left[\alpha + \frac{\beta}{2}(T_2+T_1)\right].

Since T1>T2T_1>T_2, the factor T2T1T_2-T_1 is negative. Therefore, the heat current (directed from T1T_1 to T2T_2) is given by

i=A(T2T1)[α+β2(T2+T1)]i = \frac{A(T_2-T_1)}{\ell} \left[\alpha + \frac{\beta}{2}(T_2+T_1)\right].