Solveeit Logo

Question

Question: A rod of length b moves with a constant velocity v in the magnetic field of a straight long conducto...

A rod of length b moves with a constant velocity v in the magnetic field of a straight long conductor that carries a current I as shown in the figure. The emf induced in the rod is

A

μo6mui6muv2π6mutan16muab\frac{\mu_{o}\mspace{6mu} i\mspace{6mu} v}{2\pi}\mspace{6mu}\tan^{- 1}\mspace{6mu}\frac{a}{b}

B

μ0iv2π6muln6mu(1+ba)\frac{\mu_{0}iv}{2\pi}\mathcal{\mspace{6mu} l}n\mspace{6mu}(1 + \frac{b}{a})

C

μo6mui6muv6muab4π(a+b)6mu\frac{\mu_{o}\mspace{6mu} i\mspace{6mu} v\mspace{6mu}\sqrt{ab}}{4\pi ⥂ (a + b)}\mspace{6mu}

D

μo6mui6muv6mu(a+b)4π6muab6mu\frac{\mu_{o}\mspace{6mu} i\mspace{6mu} v\mspace{6mu}(a + b)}{4\pi\mspace{6mu} ab}\mspace{6mu}

Answer

μ0iv2π6muln6mu(1+ba)\frac{\mu_{0}iv}{2\pi}\mathcal{\mspace{6mu} l}n\mspace{6mu}(1 + \frac{b}{a})

Explanation

Solution

The induced emf between two ends of a segment dx = dE = Bvdx

∴ where B = magnetic field due to straight current carrying

wire

at the segment dx = μ0i2πx\frac{\mu_{0}i}{2\pi x} ⇒ dE = μ0ivdx2π6mux\frac{\mu_{0}ivdx}{2\pi\mspace{6mu} x}

∴ The induced emf between the ends of the rod

= E = dE6mu=6muμ0iv2π6mu6mua6mua+b6mudxx\int_{}^{}{dE}\mspace{6mu} = \mspace{6mu}\frac{\mu_{0}iv}{2\pi}\mspace{6mu}\int_{\mspace{6mu} a}^{\mspace{6mu} a + b}{\mspace{6mu}\frac{dx}{x}}

⇒ E = μ0iv2π6mu6muln6mu(ba+1)\frac{\mu_{0}iv}{2\pi\mspace{6mu}}\mspace{6mu}\ln\mspace{6mu}\left( \frac{b}{a} + 1 \right) Hence (2) is correct.