Solveeit Logo

Question

Question: A rod can rotate about smooth hinge at point 'O'. A cubical block is moving in horizontal direction ...

A rod can rotate about smooth hinge at point 'O'. A cubical block is moving in horizontal direction with constant speed 2 m/s. Find value of angular velocity of rod when θ=60\theta=60^\circ (Cube has side length 2 m)

Answer

ω=34 rad/s\omega=\frac{3}{4} \text{ rad/s}, (angular velocity in magnitude).

Explanation

Solution

  1. Let the point of contact be the upper left vertex of the cube at (x,2)(x,2) so that tanθ=2x\tan\theta=\dfrac{2}{x} or x=2cotθx=2\cot\theta.

  2. Differentiate: dxdt=2csc2θdθdt\frac{dx}{dt}=-2\csc^2\theta\,\frac{d\theta}{dt}.

  3. With dxdt=2\frac{dx}{dt}=2 m/s, solve to get dθdt=sin2θ\frac{d\theta}{dt}=-\sin^2\theta.

  4. At θ=60\theta=60^\circ, sin2θ=3/4\sin^2\theta=3/4 so that ω=0.75|\omega|=0.75 rad/s.