Solveeit Logo

Question

Question: A rocket of mass M is launched vertically from the surface of the earth with an initial speed V. Ass...

A rocket of mass M is launched vertically from the surface of the earth with an initial speed V. Assuming the radius of the earth to be R and negligible air resistance, the maximum height attained by the rocket above the surface of the earth is

A

R(gR2V21)\frac { R } { \left( \frac { g R } { 2 V ^ { 2 } } - 1 \right) }

B

R(gR2V21)R \left( \frac { g R } { 2 V ^ { 2 } } - 1 \right)

C

R(2gRV21)\frac { R } { \left( \frac { 2 g R } { V ^ { 2 } } - 1 \right) }

D

R(2gRV21)R \left( \frac { 2 g R } { V ^ { 2 } } - 1 \right)

Answer

R(2gRV21)\frac { R } { \left( \frac { 2 g R } { V ^ { 2 } } - 1 \right) }

Explanation

Solution

Kinetic energy given to rocket at the surface of earth = Change in potential energy of the rocket in reaching from ground to highest point

\Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow h=v2R2gRv2h = \frac { v ^ { 2 } R } { 2 g R - v ^ { 2 } }

\Rightarrow h=R(2gRv21)h = \frac { R } { \left( \frac { 2 g R } { v ^ { 2 } } - 1 \right) }