Solveeit Logo

Question

Question: A rocket is launched with velocity of \(10km/\sec \) . If radius of Earth is R then maximum height a...

A rocket is launched with velocity of 10km/sec10km/\sec . If radius of Earth is R then maximum height attained by it will be:
A.2R
B.3R
C.4R
D.5R

Explanation

Solution

Use the Law of conservation of Energy. At the maximum height, the potential energy will be equal to the kinetic energy of the rocket.

Complete Step by Step Answer:
We are given that the velocity of the rocket, v= 10km/sec10km/\sec = 10000m/sec10000m/\sec , radius of Earth=R. According to the law of conservation of energy, we have, total energy of rocket at surface of Earth=total energy of rocket at maximum height. At surface of Earth we have K.Esurface=mv22K.{E_{surface}} = \dfrac{{m{v^2}}}{2} and P.E.surface=GMmRP.E{._{surface}} = \dfrac{{ - GMm}}{R} . At maximum height h, the rocket has velocity=0. So we have K.Emax=mv22=0K.{E_{\max }} = \dfrac{{m{v^2}}}{2} = 0 and P.E.max=GMmxP.E{._{\max }} = \dfrac{{ - GMm}}{x} , where x is the distance of rocket from centre of the Earth, i.e. x=R+hx = R + h .
Applying the law of conservation of energy ,
K.Esurface+P.E.surface=K.E.max+P.Emax mv22+(GMmR)=0+(GMmR+h)  \Rightarrow K.{E_{surface}} + P.E{._{surface}} = K.E{._{\max }} + P.{E_{\max }} \\\ \Rightarrow \dfrac{{m{v^2}}}{2} + ( - \dfrac{{GMm}}{R}) = 0 + ( - \dfrac{{GMm}}{{R + h}}) \\\
For simplification we multiply R in both numerator and denominator of the term (GMR)( - \dfrac{{GM}}{R}) and similarly R2{R^2}in numerator and denominator of the term (GMx)( - \dfrac{{GM}}{x}) . Substituting values we get
v22+[(GMR2)×R]=0+[(GMR2x)×R2]\Rightarrow \dfrac{{{v^2}}}{2} + [( - \dfrac{{GM}}{{{R^2}}}) \times R] = 0 + [( - \dfrac{{GM}}{{{R^2}x}}) \times {R^2}]
(10)22+[(g)×R]=(gx)×R2\Rightarrow \dfrac{{{{(10)}^2}}}{2} + [( - g) \times R] = ( - \dfrac{g}{x}) \times {R^2} , as we know g=GMR2g = \dfrac{{GM}}{{{R^2}}} = 9.8×103km/sec29.8 \times {10^{ - 3}}km/{\sec ^2}
(10)22+[(9.8×103)×R]=(9.8×103x)×R2\Rightarrow \dfrac{{{{(10)}^2}}}{2} + [( - 9.8 \times {10^{ - 3}}) \times R] = ( - \dfrac{{9.8 \times {{10}^{ - 3}}}}{x}) \times {R^2}
On solving the above equation we get x4Rx \approx 4R , where R6371kmR \approx 6371km .

Note: Here approximations play an important role. Keep in mind to approximate values to simplify equations. Make sure that all values have similar types of units.