Solveeit Logo

Question

Physics Question on Gravitation

A rocket is launched vertically upward from the surface of the earth with an initial velocity of 10km/s10 \,km/s . If the radius of the earth is 6400km6400 \,km and atmospheric resistance is negligible. Find the distance above the surface of the earth that the rocket will go.

A

2.5×104km2.5 \times 10^4\, km

B

3.0×104km3.0 \times 10^4\, km

C

4.0×103km4.0 \times 10^3\, km

D

3.0×103km3.0 \times 10^3\, km

Answer

2.5×104km2.5 \times 10^4\, km

Explanation

Solution

Radius of earth =6400km= 6400\, km
According to the question,
GMmR+12mv2=GMm(R+h)- \frac{GMm}{R} + \frac{1}{2} mv^{2} = \frac{GMm}{\left(R + h\right)}
GMR+12v2=GMR+h\frac{-GM}{R} + \frac{1}{2}v^{2} = \frac{-GM}{R+h}
12v2=GM(R+h)+GMR\frac{1}{2} v^{2} = \frac{-GM}{\left(R + h\right)} + \frac{GM}{R}
12v2=GM(1R+h1R)\frac{1}{2}v^{2} = GM\left(\frac{1}{R+h} -\frac{1}{R}\right)
12×(10)2=6.6×1011×6.0×1024\frac{1}{2}\times \left(10\right)^{2} = 6.6 \times 10^{-11} \times 6.0 \times 10^{24}
[16400+h16400]\left[\frac{1}{6400+h} - \frac{1}{6400}\right]
h=2.5×104kmh = 2.5 \times10^{4} \,km